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1. INTRODUCTION

In this work, we apply the statistical anal-
ysis method to the ground-based lidar data
(June 1996-March 1999) continuously observed in
Tsukuba with the National Institute for Environ-
mental Studies compact lidar. We analyze the ver-
tical distribution by applying a distribution func-
tion and study seasonal variation. The vertical
profile is recorded every 15 minutes and multiple
cloud-base heights are allowed up to 10 for a single
profile.

2. METHODS

It is clearly observed from the empirical distri-
bution of the cloud-base height observed in June
1-30, 1996 (Fig. 1) that the distribution is not
unimodal; it may be bimodal, trimodal or mul-
timodal. Since there may be three cloud overlap
in the vertical, mixtures of two or three distri-
butions as theoretical distributions are fitted to
empirical distributions of the cloud-base height in
this study. Fitting methods are described below.

The normal (Gaussian) distribution with mean
u (—00 < p < 00) and variance 02 (o > 0) whose
probability density function is expressed as
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is denoted by N(u,02). The mixture of 2-
component normal distributions N(u;,0%) and
N (p2,03) with weight p; (> 0) and p, = 1—p; (>

0) has a probability density function

f(z,0) = pig(z;p1,01) + p2od(z; p2, 02),

—00 < < 00, 0=(p1’”1,“2’01a02)l~

Similarly the mixture of 3-component normal
distributions N(u;,0%), N(ua,03) and N(us,03)
with weight p; (>0),p2 (>0)and ps=1—p; —
p2 (> 0) has a probability density function

= p1o(x; p1,01) + Pag(x; p2, 02)
+psd(z; us,03), —00 <z < 00.

f(=,6)

Here the parameter of the distribution consists of
a vector 8 = (py,pe, 1, li2, 43,01,02,03)'. The
frequency curve is fitted to the empirical dis-
tribution only over the interval (0,00), because
the cloud-base height conditional on cloud always
takes positive values. Actually values smaller than
Ty =100 (m) are not measured and from the em-
pirical study the number of observations greater
than T, = 10,000 (m) is very small. Thus, trun-
cated 2- and 3-component normal distributions

f(z,6)

A L)
9(=.9) T f(t,6)dt

y, i<z <T
will be fitted to the empirical distribution.

The lognormal distribution with two parame-
ters u and o2, denoted by LN (u,0?), is defined
as the distribution of a random variable whose
logarithm is distributed as N(u,02). It may be



adequate to consider lognormal distributions as
a model distribution of the cloud-base height be-
cause it is known (Crow and Shimizu eds., 1988)
that some cloud characteristics such as heights,
horizontal sizes and durations are well fitted by
lognormal distributions. The probability density
function of LN (u,0?) is
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where logz stands for the natural logarithm of
z. The parameter o is a shape parameter and
When X is dis-
tributed as LN(u,0?), the mean and the vari-
ance of X are E(X) = exp[p + 0%/2] and
Var(X) = {E(X)}*(exp[o?] — 1), respectively.
The mixture of 2-component lognormal distri-
butions LN (p1,0?) and LN (us,032) with weight
p1 (> 0) and p» = 1—p; (> 0) and the mixture of
3-component lognormal distributions LN (y;,0%),
LN (p2,02) and LN (pu3,032) with weight p; (> 0),
p2 (2 0) and p3 = 1 — p; — p2 (> 0) may be de-

exp(p) is a scale parameter.

fined in a similar way to the mixtures of 2- and 3-
component normal distributions. Similarly to the
case of normal distributions, truncated lognormal-
mixture distributions will be fitted to the empiri-
cal distributions.

We explain below the fitting methods used in
this paper. Let z;,z,,...,x, denote a time series
of the cloud-base height observed in a fixed time
interval, for example in June in 1996, conditional
on cloud. The size of the sample is n and the data
set includes values greater than 100.

The usual maximum-likelihood (ML) estimate
of @ is obtained by maximizing the likelihood

n
¢(6) = [] o(=:,9)
‘i:l
or by minimizing the minus log-likelihood
51(6) = —log £(6)

with respect to 8, where g is the probability den-
sity function of a candidate model.

We also employ estimation methods based on
grouped data. First, histogram is produced as
follows. The support of the histogram covers the
values of all data zy, s, ..., 2, with range h = 100

(m) starting from T3 = 100. Suppose that K is
equal to [max;<i<a(z;—T1)/h] with notation [a],
the least integer which is equal to or greater than
a, and the interval (Ty,Kh] is exclusively sepa-
rated into (71, Ty + A, (Th + h,T1 + 2h),...,(Th +
(K = 1)h,T1 + Kh]. Thus, K represents the to-
tal number of categories. From n observed data
points, f; ( = 1,..., K), the frequency in the jth
category, will be counted. Fig. 1 has been made
in this way.

Second, the following fitting algorithm will be
used to estimate the parameter & of a candi-
date model whose probability density function
is g(z,0). Since the frequency in each category
whose lower bound is greater than 10,000 m is
very small, the theoretical probability of such a
category would be very small, too, when a model
distribution would be fitted to the empirical dis-
tribution. This may cause some problems of nu-
merical computation when the fitting algorithm is
used. Thus, we actually fit models to the empiri-
cal distribution only over the interval (T, T; + kh)]
with £ = 99 as in the ML estimate. The grouped
data ML estimate is provided by the estimate that
maximizes the likelihood

k
L) = [[(m;(0))%
j=1
or that minimizes the minus log-likelihood

S2(0) = —log L(6)

with respect to 8, where 7;(6) denotes the prob-
ability of the jth category under the theoretical
model, i.e.,

ns(6) = /T, +ih

Ti+(i—1)h

g(z,0)dz.

The minimum x? estimate, 8, of 8 is provided by
minimizing the x? or goodness of fit statistic

k PR— T 2
0= 3 =zl

with respect to §. The minimum X2 estimator
is asymptotically equivalent to the grouped ML
estimator.

S-PLUS (1995) has a function nlminb (Nonlin-
ear Minimization with Box Constraints) to find



the local minimum of a multivariate function.
There are two required arguments to nlminb:
objective (functions S;(6), S2(8) and S3(8) to
be minimized in our case) and start (a vector
of starting values for the minimization). Since,
by default, there are no boundary constraints on
the parameters, it is impossible to give the con-
straint p; + p; < 1 for instance. However, we
can find an estimate by moving p step by step un-
der the conditions p; € [0,p] and p; € [0,1 ~ p]
because the nlminb function also takes the op-
tional arguments lower and upper that specify
the bounds on the parameters. The range [0, co]
is used for the range of ¢’s because model param-
eters o’s move from zero to plus infinity. Model
parameters p’s move from minus infinity to plus
infinity, but it should be noted that the range of
u’s is also constrained as [100, co] because modal-
ity occurs on that interval.

An optimal model between 2- and 3-component
normal and lognormal mixtures is chosen by max-
imizing approximate p-values P(x? > S3(6)),
where x? denotes a random variable whose distri-
bution is the x? distribution with k—1—7 degrees
of freedom. Here r is the number of parameters
in the hypothesized model; » = 5 for 2-component
normal and lognormal mixtures, and r = 8 for 3-
component normal and lognormal mixtures.

3. RESULTS

Three estimation methods, exact ML, grouped
ML and minimum x?, were compared. The dif-
ference between the results (not cited) was very
small. Because it is theoretically known that these
three are asymptotically equivalent, this is a valid
conclusion (in our case the size of the sample is
very large). Thus, it is enough to use the ex-
act ML method for the parameter estimation of

a model.

Table 1 shows the estimated parameter values
and the values of S3(f) for the method of mini-
mum x? when the hypothesized model is a trun-
cated 3-component lognormal mixture. From Ta-
ble 1 we see that the fit of truncated 3-component
lognormal mixture is poor in the sense that the
hypothesized model is rejected at the 0.01 level

of significance in many cases. The fit is worse for
truncated 2- and 3-component normal mixtures
and for truncated 2-component lognormal mixture
except several cases. However, it may be enough
to choose a 2-component normal model for inter-
preting the data set. Fitted distributions can be
seen in Figs. 1 and 2.

Roughly speaking the 3-component lognormal
mixture is an adequate model for data in summer
(Fig. 2), while for data in winter (Fig. 3) the 3-
component normal mixture is better. This reflects
clear seasonal variation. The proposed model is
useful in the sense that it gives some information
on the distribution such as modality, weight and
local maximum. When the 2-component normal
mixtures are fitted to the empirical distribution,
the estimated values of u’s are shown in Fig. 4.
Yearly variation can be seen because of continuous
observation from June 1996 to March 1999.

Table 1.
(truncated 3-component lognormal mixture)

Minimum x? estimation

Fig. 1. Empirical and fitted distributions
of cloud-base heights (96,/06)
(truncated 2-component normal and lognormal
mixtures)
Fig. 2. Empirical and fitted distributions
of cloud-base heights (96,/06)
(truncated 3-component normal and lognormal
mixtures)
Fig. 3. Empirical and fitted distributions
of cloud-base heights (96/12)
(truncated 3-component normal and lognormal

mixtures)

Fig. 4.
(truncated 2-component normal mixtures)

Variation of estimated p’s
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Table 1: Minimum x? estimation (truncated 3-component lognormal mixture)

P1

P2

i

ftz

H3

b1

o2

&3

S3(0)

96,/06

0.6182

0.1380

7.0391

7.0407

8.8182

1.3915

0.3216

0.1976

163.66

96,/07

0.4908

0.0980

6.1930

7.1504

8.9676

0.9332

0.2804

0.4007

175.29

96/08

0.6540

0.1927

6.9494

7.3378

8.8746

1.3992

0.3309

0.2076

128.79

96,09

0.0340

0.7695

7.3231

7.9155

8.8154

0.0948

1.2657

0.1886

172.48

96/10

0.0266

0.8287

5.6081

7.5219

8.8364

0.3808

0.6079

0.1845

187.76

96/11

0.0310

0.2363

5.7421

7.3575

8.9715

0.1922

0.2286

1.5706

310.68

96/12

0.0000

0.4209

4.9013

7.2975

8.0814

1.0843

0.2319

1.1603

175.54

97/01

0.2634

0.1834

7.1262

7.3951

8.3707

1.3605

0.2095

0.3964

115.97

97702

0.3995

0.5655

7.3447

8.3765

8.5635

0.3651

1.3164

0.0538

151.60

97/03

0.2702

0.5224

7.4163

7.4364

8.5035

0.2347

1.0446

0.1693

144.04

97/04

0.1943

0.0357

7.4615

8.5135

10.529

0.5235

0.1049

9.7963

190.68

97/05

0.3831

0.4298

6.1677.

7.5498

8.7533

0.7597

0.4813

0.1938

134.27

97/06

0.6841

0.2075

7.0459

8.4712

8.8483

1.2159

0.3002

0.0822

160.50

97/07

0.0011

0.0089

6.5505

8.6293

31.228

0.0068

0.2799

15.111

168.19

97/03

0.6001

0.1093

6.5688

7.1957

8.6963

0.7840

0.1124

0.3971

173.43

97/09

0.5685

0.2497

6.7610

7.6074

8.5935

1.0010

0.3138

0.2985

161.92

97/10

0.0000

0.1848

5.0197

7.3790

9.0953

1.2134

0.2939

1.6359

248.63

97/11

0.3604

0.4983

6.2711

7.5226

8.7191

0.6389

0.4291

0.1971

115.39

97/12

0.1710

0.7036

6.0798

7.2947

8.6265

0.4286

0.3644

0.2052

108.42

98/01

0.0688

0.5359

6.8871

7.3507

8.4439

0.8887

0.3157

0.3073

158.92

98/02

0.1930

0.6411

6.2873

7.2483

8.3664

0.4303

0.4304

0.2728

138.22

98/03

0.1886

0.5532

6.6360

7.4413

8.5500

0.8070

0.3703

0.2006

146.30

98,/04

0.6821

0.1096

6.1990

7.3263

8.6180

1.5954

0.1833

0.2988

181.28

98/05

0.4099

0.2632

6.3574

7.1000

8.5999

1.1161

0.4536

0.4338

120.13

98,/06

0.3409

0.3305

4.9949

7.0186

8.7597

1.1908

0.5138

0.3177

241.28

98/07

0.0100

0.0100

6.5731

8.8213

22.666

0.3423

0.1047

11.191

145.64

98,08

0.9300

0.0370

1.5039

6.6097

8.6634

1.3236

0.6973

0.4468

143.85

98/09

0.8676

0.0952

4.1763

7.0246

8.8251

0.1647

0.9765

0.2838

170.09

98/10

0.3025

0.2880

6.6811

7.3125

8.7327

1.2629

0.4259

0.2450

153.15

98/11

0.0909

0.3610

6.1302

7.4232

8.7740

0.4573

0.3156

0.2453

164.65

08/12

0.2972

0.4579

6.9914

7.4760

8.7511

0.6899

0.2964

0.1981

161.12

99/01

0.0000

0.3017

5.1678

7.2871

8.3732

0.7583

0.4405

1.1204

218.09

99/02

0.1037

0.7691

4.5742

7.7638

8.4683

2.0699

0.7718

0.2427

110.03

99/03

0.3837

0.3340

6.5826

7.3426

8.6866

0.8725

0.2806

0.2624

165.37
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Fig. 1: Empirical and fitted distributions of cloud-base heights (96/06) (truncated 2-
component normal and lognormal mixtures)
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Fig. 2: Empirical and fitted distributions of cloud-base heights (96/06) (truncated 3-

component normal and lognormal mixtures)
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Fig. 3: Empirical and fitted distributions of cloud-base heights (96/12) (truncated 2-
component normal and lognormal mixtures)
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Fig. 4: Variation of estimated p’s (truncated 2-component normal mixtures)



