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1. INTRODUCTION

In this work, we apply the statistical anal-

ysis method to the ground-based lidar data

(June 1996-March 1999) continuously observed in

Tsukuba with the National Institute for Environ-

mental Studies compact lidar. We analyze the ver-

tical distribution by applying a distribution func-

tion and study seasonal variation. The vertical

profile is recorded every 15 minutes and multiple

cloud-base heights are allowed up to 10 for a single

profile.

2. METHODS

It is clearly observed frorn the empirical distri-

bution of the cloud-base height observed in June

1-30, 1996 (FiS. 1) that the distribution is not

unimodal; it may be bimodal, trimodal or mul-

timodal. Since there may be three cloud overlap

in the vertical, mixtures of two or three distri-

butions as theoretical distributions are fitted to

empirical distributions of the cloud-base height in

this study. Fitting methods are described below.

The normal (Gaussian) distribution with mean

p (-m I p 1m) and variance o2 (o > 0) whose

probability density function is expressed as
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is denoted by N(p,o'). The mixture of 2-

component normal distributions N(pt,o?) and

N (pr,o!) with weight pr (> 0) and pz : 1-pr (>

0) has a probability density function

I  @,0) = prd@; pr,  or)  + pz6@; p2, o2), ,

-oo (  c (  oo,  0 -  (ptrPr, , l lzrorro2) ' .

Similarly the mixture of 3-component normal

distr ibut ions N(p1 ,o?),  N(pr,of)  and N(pt,o3)

with weiglrt p1 () O), pz (> 0) and p3 - 1 - pt -

pz (>_ 0) has a probability density function

f  ( r ,o)  _ prQ@; Ft,or)  + pzQ@; r t2,o2)

+mf@il . ts,os),  -oo (  r  (  m.

Here the parameter of the distribution consists of

a veCtOr 0 = (r1rpzrPtr l tzr l tgrotrozroJ) ' .  The

frequency curve is fitted to the empirical dis-

tribution only over the interva.l (0, oo), because

the cloud-base height conditional on cloud always

takes positive values. Actually values smaller than

T1 - 100 (m) are not measured and from the em-

pirical study the number of observations greater

than T2 - 10,000 (m) is very small. Thus, trun-

cated 2- and 3-component normal distributions

g(n,g) - 
-t@'o)-. 

?r I r 1 T2
ff: tt''o)dt'

will be fitted to the empirical distribution.

The lognormal distribution with two parame-

ters p and a2, denoted by IN(p,o2), is defined

as the distribution of a random variable whose

logarithm is distributed as N(p,o'). It rnay be
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adequate to consider lognormal distributions as

a rnodel distribution of the cloud-base height be-

cause it is known (Crow and Shimizu eds., 1988)

that some cloud characteristics such as heights,

horizontal sizes and durations are well fitted by

lognormal distribrrtions. The probability density

firnction of LN(trr,o2) is

€(x;r,,o): h""o [- $Wt,- D'f ,
r )0,

where log o stands for the natural logarithm of

r. The parameter o is a shape parameter and

exp(p) is a scale parameter. When X is dis-

tributed as LN(p,,o2), the mean ancl the vari-

ance of X are E(X) _ exp[/, + o2lZl and

Var(X) _ {E(X)}2 (exp[a2] - 1), respectively.

The mixture of 2-component lognormal distri-

butions LN(ttt,af) and LN(ttr,o!) with weight

pt (> 0) and Pz : | - p, (> 0) and the rnixture of

3-component logrrormal distributionsIN(p r, o?),

LN(pr,ol) and LN(pt, ol) with weight pr (> 0),

pz (> 0) and Ps : | - pt - pz (> 0) rnay be de-

fined in a similar way to the mixtures of 2- and 3-

component normal distributions. Similarly to the

case of normal distributions, truncated lognormal-

mixture distributions will be fitted to the empiri-

cal distributions.

We explain below the fitting methods used in

this paper. Let f irrfr2r...rfrn denote a time series

of the cloud-base height observed in a fixed time

interval, for example in June in 1996, conditional

on cloud. The size of the sample is n and the data

set includes values greater than 100.

The usual maximum-likelihood (ML) estimate

of 0 is obtained by ma;<imizing the likelihood

((o)-finu,,,e)
i : l

or by minimizing the minus log-likelihood

Sr (d) - - toe (Q)

with respect to 0, where g is the probability den-

sity function of a candidate model.

We also employ estimation methods based on

grouped data. First, histogram is produced as

follows. The support of the histogram covers the

va.lues of all data lcr,12,...,rn with range h - 100

(m) starting from ?r : 100. Suppose that /( is

equal to [ma>c1a ;<n(r;-Tt) lhl with notation fal ,

the least integer which is equal to or greater than

n, and the interud (ft,I{h) is exclusively sepa-

rated into (Tr ,Tr * hl, (ft * h,,71 + 211,...,(?r +

(K - 1)h' fi + Khl. Thus, K represents the to-

tal number of categories. FYom n observed data

points, f i U = 1, ..., K), the frequency in the 7th

category, will be counted. Fig. I has been made

in this way.

Second, the following fitting.algorithm will be

used to estimate the parameter d of a candi-

date model whose probability density function

is g(r,0). Since the frequency in each category

whose lower bound is greater than 10,000 m is

very small, the theoretical probability of such a

category would be very small, too, when a model

distribution would be fitted to the empirical dis-

tribution. This may cause some problems of nu-

merical computation when the fitting algorithm is

used. Thus, we actually fit models to the empiri-

cal distribution only over the interval (Tr,Tr+kh)

with /c: 99 as in the ML estimate. The grouped

data ML estimate is provided by the estimate that

maximizes the likelihood

&
L(o) - fIt", @)lt'

j :L

or that minimizes the minus log-likelihood

Sz(P) -  - log.L(0)

with respect to 0, where ri@) denotes the prob-

ability of the jth category under the theoretical

model, i.e.,

n iQ)

The minirnum X2 estimate, A, of 0 is provided by

minimizing the X2 or goodness of fit statistic

ss(g) : i  u i-"T{o)) '
H ntri@)

with resp ect to 0. The rnirrirnum X2 estimator

is asymptotically equivalent to the grouped ML

estimator.

S-PLUS (1995) has a function nlminb (Nonlin-

ear Minirnization with Box Constraints) to find

1T1f. jlt

_ I  g@,0)dn.
J"r+( j - l ) , ,
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the local minimum of a multivariate function.

There are two required arguments to nlminb:

objective (functions ,91 @), S2@) and S3(d) to

be minimized in our case) and start (a vector

of starting values for the minimization). Since,

by default, there are no boundary constraints on

the parameters, it is impossible to give the con-

straint h * pz S I for instance. However, we

can find an estimate by moving p step by step un-

der the conditions pr € [0, p] and pz € [0, 1 - p]

because the nlminb function also takes the op-

tional arguments lower and upper that specify

the bounds on the pararneters. The range [0, m]

is used for the range of o's because model param-

eters o's move from zero to plus infinity. Model

parameters p's move from minus infinity to plus

infinity, but it should be noted that the range of

p's is also constrained as [100, oo] because modal-

ity occurs on that interval.

An optimal model between 2- and 3-component

normal and lognormal mixtures is chosen by rnax-

imizing approximate pvalues P(X' >
where 12 denotes a random variable whose distri-

bution is the X2 distribution with k - 1 - r degrees

of freedorn. Here r is the number of pararneters

in the hypothesized model; r : 5 for 2-component

normal and lognormal mixtures, and r : 8 for 3-

component normal and lognormal mixtures.

3. RESULTS

Three estimation nrethods, exact ML, grouped

ML and minimum 12, were compared. The dif-

ference between the results (not cited) was very

small. Because it is theoretically known that these

three are asymptotically equivalent, this is a valid

conclusion (in our case the size of the sample is

very large). Thus, it is enough to use the ex-

act ML method for the paranreter estimation of

a rnodel.

Table I shows the estimated parameter values

and the values of ,Sg(0) for the method of mini-

mum 12 when the hypothesized model is a trun-

cated 3-component lognormal mixture. Flom Ta-

ble 1 we see that the fit of truncated 3-component

lognormal mixture is poor in the sense that the

hypothesized model is rejected at the 0.01 level

of significarlce in many cases. The fit is worse for

truncated 2- and 3-component normal mixtures

and for truncated 2-component lognonnal mixture

except several cases. However, it may be enough

to choose a 2-component normal model for inter-

preting the data set. Fitted distributions can be

seen in Figs. I and 2.

Roughly speaking the 3-component lognormal

mixture is an adequate model for data in summer

(Fie. 2), while for data in winter (FiS. 3) the 3-

component normal mixture is better. This reflects

clear seasonal variation. The proposed model is

useful in the serrse that it gives sorne information

on the distribution such as modality, weight and

local mar<imum. When the 2-component normal

mixtures are fitted to the empirical distributiorr,

the estirnated values of p's are shown in Fig. 4.

Yearly variation can be seen because of continuous

observa,tion from June 1996 to March 1999.

Table 1. Minimum 12 estirnation

(truncated 3-component lognormal mixture)

Fie. 1. Empirical and fitted distributions

of cloud-base heights (96/06)

(truncated 2-component normal and lognormal

mixtures)

Fig. 2. Empirical and fitted distributions

of cloud-base heights (96/06)

(truncated 3-component normal and lognonnal

mixtures)

Fig. 3. Empirical and fitted distributions

of cloud-base heights (96/12)

(truncated 3-component normal and lognorrnal

mixtures)

Fig. 4. Variation of estimated p's

(truncated 2-component normal mixtures)
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Table 1: Minirnum X2 estimation (trunca,tecl 3-component lognormal nrixture)

Pt Pz fut l-rz irt 6t b2 bz s'r (o)
e6/06 0.6182 0.1380 7.03917.0407 8.8182 1.39r50.3216 0.1976 163.66
96 l07 0.4908 0.09806.1980 7 .1504 8.9676 0.9332 0.2804 0.4007 17 5.29
e6/08 0.6540 0.1927 6.9494 7.33788.8746 1.39920.3309 0.2076 128.79
e6l0e 0.0340 0.7695 7.323r 7.91558.8154 0.0948 r.2657 0.1886 T72.48
e6l10 0.0266 0.82875.6081 7.lt2l9 8.8364 0.3808 0.6079 0.1845 r87.76
e6/ n 0.0310 0.2363 5.7 421 7 .357 5 8.9715 0.1922 0.2286 1.5706 310.68
e6l12 0.0000 0.4209 4.9013 7.2975 8.0814 1.08430.2319 1.1603 17 5.54
s7 101 0.2634 0.1 834 7.1262 7.39518.3707 r .36050.2095 0.3964 115.97
e7 l02 0.3995 0.5655 7.3447 8.37658.5635 0.3651 1.31640.0538 151.60
e7 l03 0.2702 0.5224 7.4163 7.4364 8.5035 0.2347 r.0446 0.1693 144.04
e7 lo4 0.1943 0.0357 7 .4615 8.5135 10.5290.5235 0.1049 9.7963 190.68
e7 105 0.3831 0.4298 6.1677 7.5498 8.75330.7 597 0.4813 0.1938 r34.27
e7 l06 0.6841 0.2075 7 .0459 8.4712 8.8483 1.21590.3002 0.0822 160.50
e7 l07 0.0011 0.0089 6.5505 8.6293 3r.228 0.0068 0.2799 15.111 168.19
e7 l08 0.6001 0.10936.5688 7.1957 8.6963 0.7840 0.1124 0.3971 17 3.43
e7 los 0.5685 0.2497 6.7610 7.60748.5935 1.00100.3138 0.2985 r  61.92
s7 lro 0.0000 0.18485.0197 7 .3790 9.0953 r.21340.2939 1.6359 248.63
eTlrr0.3604 0.49836.27 rr 7 .5226 8.7191 0.6389 0.4291 0.r971 115.39
s7 112 0.1710 0.70366.0798 7 .2947 8.6265 0.4286 0.3644 0.2052 10.3.42
e8/01 0.0688 0.5359 6.8871 7.35078.44390.8887 0.3157 0.3073 158.92
e81020.r  930 0.6411 6.2873 7.2483 8.3664 0.4303 0.4304 0.2728 138.22
e8/03 0.1886 0.5532 6.6360 7 .4413 8.5500 0.8070 0.3703 0.2006 146.30
eBl04 0.6821 0.10966.1990 7 .3263 8.6180 1.59540.1833 0.2988 18 r .28
eB/05 0.4099 0.2632 6.357 4 7.1 000 8.5999 I 1161 0.4536 0.4338 1 20.1 3
e8/06 0.3409 0.33054.9949 7.01868.7597 1.19080.5138 0.3177 24r.28
e8/07 0.0100 0.0100 6.5731 8.8213 22.666 0.3423 0.1047 11.191 r45.64
e8/08 0.9300 0.0370 1.50396.60978.6634 1.32360.6973 0.4468 143.85
9B/09 0.8676 0.0952 4.1763 7 .0246 8.825r4.1647 0.9765 0.2838 170.09
e8/r0 0.3025 0.2880 6.6811 7 .3125 8.7 327 r.2629 0.4259 0.2450 r53.15
e8/11 0.0909 0.3610 6.1302 7.42:128.77 40 0.45730.3156 0.2453 164.61-r
s8lr2 0.2972 0.4579 6.9914 7.47608.75110.6899 0.2964 0.1981 16r.12
ee/0 r 0.0000 0.3017 5.1 678 7 .287 L 8.37320.7583 0.4405 | .1204 218.09
eslo20.1 037 0.76914.57 42 7.76388.46832.06990.7718 0.2427 1r 0.03
ee/030.3837 0.3340 6.5826 7.3426 8.6866 0.87250.2806 0.2624 165.37
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