Trivariate Mixed Lognormal Distribution:
A Statistical Model for Analyzing Cloud Data

Kunio Shimizu, Science University of Tokyo
Tadahiro Hayasaka, Tohoku University
Nobuo Sugimoto and Ichiro Matsui, National Institute for Environment Studies

1. Introduction

There is a description (Crow and Shimizu eds., 1988) in which some cloud measure-
ments such as heights, horizontal sizes, and durations are lognormally distributed. Actu-
ally this empirical distribution is a distribution conditional on cloud. The mixed lognormal
distribution, which consists of a positive probability mass at the origin and a lognormal
distribution, is a statistical model which includes the condition of no cloud, just like rain
distribution (Kedem and Pavlopoulos, 1991). Since an atmosphere contains three cloud
layers, low, medium, and high, we assume that a vector of random variables (X,Y,Z) rep-
resenting some cloud measurement in the three cloud layers follows the trivariate mixed
lognormal distribution whose definition will be seen in section 3, which is a trivariate
extension of the bivariate mixed lognormal distribution defined by Shimizu (1993).

2. Sample

If clouds exist in lower layers, data in upper layers cannot easily be obtained by ground-
based observations. Lidar observations from satellites make possible to obtain data in
the upper layers. Taking into account this point, suppose that cloud measuremants are
observed by radar from ground and space at the same time; we assume that available
data have the following structure: '
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where z’s, y’s, and z’s are positive values. A special feature of the structure is that values
of y are unobservable if values of z and z are positive.
The following notation is used throughout this paper:
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3. Model
The trivariate mixed lognormal distribution is defined by
Pr(X>0,Y>0,Z>0) = p,,,,
PriX>0,Y>0,Z=0) = p,,,,
Pr(X=0,Y>0,Z>0) = p,,,,
Pr(X>0 Y=0,72>0) = p,,,,
Pr(X>0Y=2=0) = p.,
Pr(X “0Y>OZ_0) = DPoyor
Pr(X=Y=0,Z>0 = p,,,
(X Y=7= 0) = Pooo

and
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(X<$|X>0Y Z=0)= Az | px,(c¥)?),
PriY <y| X =0,Y>0,Z=0)=A(y | py, (05)?),
Pr(Z<z|X=Y=0,Z>0)= Az | py, (o))

for ,y,z > 0, where A(t | p7,(05)?) is the distribution function of a univariate log-

normal distribution A(u7, (077)?%), Ao(s, t | uk, ph=, (k)2, (O'T) ,P%7) the joint distribu-

tion function of a bivariate lognormal distribution A. 21§, 15, (05)2, (k)2 p%r), and



As(z,y,z | u,Z) the joint distribution function of a trivariate lognormal disribution
As(p, ). Then, for example, for z > 0,
Pr(X <z) = 6+ PxooA(T | b (0':‘?)2) + Pxoz Az | P"X 5 ( 3*)2)
+pXY01\(xIH}Y‘7(U}Y‘)2)+pXYZ (quX)UX)’

where §, = Pr(X = 0) = Pyoo + Pooz + Poyo + Doyz» Which is a mixed distribution whose
continuous part consists of a mixture of four lognormal distributions. If p, = p = wy =

py and 0% = (0%)? = (6%)? = (0%)?, then it clearly holds that
Pr(X <z)= oy + (1 - éx)A(x | /‘x*ag{%
which is a mixed lognormal distribution. Bivariate distribution functions are also obtain-

able. For example, for z,y > 0,
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Some other quantities of interest are
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4. Maximum likelihood (ML) estimation
The likelihood function is expressed as
L= L1 X Lg,
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L = n ny . ,n2 n3 n4 ns ne ny
L ( ni,n2, N3, Ny, Ns, Ne, N7 ) (pxyz t px°Z) pXYoposzxoopoyopoozpooo
L o= 1 Preyzallins Bz 0% 0% s | Zir 70) + Prog M (¥, 85 (0%) (9F)? P2 | 20 20)
i 1 Pxvyz + Pxoz

X H}"A’ .u\’uuY’ ‘)21(U\l’~)2’p4”

T 7.7/; H)‘2 PY.MHZ’ )2,(0'22‘)27P§;z yz‘ztaz?*)

X H/\#\'vd\’zlln)n’\(ﬁ‘yaUy)2|J H’\/‘ZvUZ | 2;7).

=1



n . . . . . .2 ] »”
Here indicates a multinomial coefficient, A(xF, (¢57)* | t) the
Ny, N2, N3, Ny, N5, g, N7

density function of A(pF, (6F)?), and Ao (p¥, w5, (052, (05°)%, p%r | 5, t) the joint density
function of Az(u¥, w7, (05°)% (0F)?, 57).

From now on we assume that u, = u¥, p, = u¥, o) = 0%, 0, = 05, py; = P,
i.e., the marginal distribution of X and Z when X > 0 and Z > 0 is the same bivariate
lognormal distribution whether Y is positive or not, and write p = p,,., +P,,,- Then the
ML estimates of p, pxyo, Poy z, PXoo, Povo, Pooz and pogo are given by
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Making an assumption
(1) Pxys = max(0,pxyo + Poyz + Pxoz — 1)
or (2) Pxyz = MIN(Pxo; Poyvos Pooz)

as a constraint, we can have estimates of p,,,,p,,,- This assumption is taken from (1)
the minimum overlap assumption or (2) the maximum overlap assumption (Morcrette and
Fouquart, 1986; Tian and Curry, 1989). The assumption (2) is meaningful only if n; >
min(ng,ns, ne).

We use the following notation on hypotheses:

HY : py = px = pX (= ),

Hy : py = py = 4 = 47 (= p2);

H s py = 47 = p7 (= pa),

oy = 0¥ =¥ (=),

HY : oy = o = o} (= 02),

Hg :0, =% = o¥ (= 03),

H o, =0 =0y =0V =cV =0} =0, =08 =0¥%(=0),
H?: py, = pXy = P¥z(= p).
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Shimizu (1993) points out that the main concerned parameter of A(p,0?) is o, a shape
parameter, while exp(u) is a scale parameter, and that the constancy of o , which means
"structural stability” in a sense, can be seen in daily rainfall distributions as well as in
many lognormal applications. Thus, the following cases may be considered to be more

important hypotheses:

Case 1 (General; all parameter values are different.), Case 2 (H%), Case 3 (Hy),
Case 4 (H%), Case 5 (H%,Hy), Case 6 (H%,H%), Case 7 (Hy,H%), Case 8 (H?),
Case 9 (H%, H?), Case 10 (Hy, H?), Case 11 (H%, H?), Case 12 (H%, Hy, H*?), Case
13 (H%, H%, H*?), Case 14 (Hy,H%, H?), Case 15 (H?, H*).

Others are, for example, (Hy, H?, H?) and (HY%, Hy, Hy, H?, H?). These hypotheses

include constraints on p’s.



The log-likelihood for estimating p’s, o’s and p’s is

¢ = [n1 <log0' +logo, + 1log(l — xz)) + n, (loga +log oy" + Jlog(1 — (p_}(“y)z))
+n3 (log oy +log 0% + Llog(1l — (p¥5)? )) + nylog oy + nslog oy + nglog oy

2 2
—1 ____m logzi—uy \* _ l°51'i—'#x> (logz.'—pz> log z;—p,
+2(1’—p}z) 2iz1 {( o5 ) 2pxz ( T 7, + v

' n logzte—ple ) 2 . (logzt —pl\ [logy!®—uls log y1* —ule \ 2
+———2(1—(;§(‘y)2) 22 {( g le' “x) — 2pky (ogr‘;}x, “1() (osyéi: #y) + <°syay. ux) } (1)

1 na logy2*—u% \ 2 2« [ logy?*~ul log 22°— 2+ log 22+ =2+ \ ?
1
+ ( =1 0_7‘; - 2/)YZ 0’?; ‘ ;22. + a,zfo

2(1-(s%,)?)

+apgy S (log i = uy ) + gk DIt (log ™ — 47)* + s Tia(log 277 — 43 )7

In Case 1 pu’s, o’s and p’s can be estimated by

fx =logz, p¥ =logz'™, p¥ =logz™,
py =logy'*, ¥ =logy¥, iy =logy™, (2)
fi; =logz, 7 =logz?, iy =logz™,
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Since there is no observation that triple va.lues are all positive, parameters p,, 0%, p,,
and p,, are inestimable unless there is any assumption. We can use the following ad hoc

estimates in all cases:
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When there are no constraints on g's, the estimates are given by (2). As for estimates
of o’s and p’s, estimating functions can be obtained in principle. For example, the ML

estimates of o and p in Case 15 (H?, H”) satisfy the estimating functions
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and
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However, for ¢’s and p’s, denoted by (64, ..., 8), it is enough for getting ML estimates to
solve the following simultaneous equations numerically:

ot
a6;
where £ is given by (1) with (2).

In the case of (Hy, H?, H?), we have the ML estimates and estimating function

0 (i=1,..,k),

fiy =logz, px =logz*, f, =logz, iz =logz™,
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However, when there are constraints on u’s, there are cases where it is difficult to

have ML estimates even for u’s in closed forms. Thus, it is recommended to obtain ML



estimates for u’s, o’s and p’s, denoted by (4, ...,0,), by numerically solving simultaneous
equations

5. Model selection

A procedure which minimizes Akaike’s Information Criterion (AIC),
AIC = —2£ + 2m,

can be used to select an "optimal” model from among many, where 7 is the maximum
“loglikelihood, which is computed by replacing the parameters by their maximum likelihood
estimates in (1), and m the number of free parameters in the model. The procedure
i1s much different from testing statistical hypotheses because it is free from assigning a
practical level of significance. Sakamoto et al. (1983) have given remarks on the practical
use of the minimum AIC procedure: The number of free parameters should be less than
2v/N (N/2 at most), where N = Y™, n; in our case, and the difference of AIC’s is
considered to be significant if it is larger than 1-2. '
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