波長 266 nm レーザーを用いたラマンライダーによる 水蒸気量の東京での観測

内保 裕一¹, 松木 一人¹, 吉田 秀司¹, 竹内 栄治¹, 長谷川 壽一¹, 矢吹 正教² ¹英弘精機(株) (〒151-0072 東京都渋谷区幡ヶ谷 1-21-8) ²京都大学生存圏研究所(〒611-0011 京都府宇治市五ケ庄)

Observation of water vapor profiles by Raman lidar with 266 nm laser in Tokyo

Yuichi UCHIHO¹, Kazuto MATSUKI¹, Shuji YOSHIDA¹, Eiji TAKEUCHI¹, Toshikazu HASEGAWA¹ and Masanori YABUKI²

¹EKO INSTRUMENTS CO., LTD, 1-21-8 Hatagaya, Shibuya-ku, Tokyo 151-0072, Japan ² Research Institute for Sustainable Humanosphere (RISH), Kyoto University, Gokasyou, Uji, Kyoto 611-0011, Japan

Abstract: To capture the predictive information of localized heavy rain or linear rainband is critical in reducing water disasters. Water vapor profiling by lidar is a useful tool for understanding the atmospheric conditions and the observation system is expected to work regardless of night and day. We have previously reported that a Raman lidar with a 266 nm laser was developed, which enables a continuous observation with a high signal-to-noise ratio throughout the day, and water vapor profiles were observed in RISH throughout the year. In this study, we report the results of water vapor profiles in Tokyo by a Raman lidar which is the same type as RISH.

Key Words: Water vapor mixing ratio, Raman lidar, Solar-blind UV, 266 nm

1. はじめに

局地的大雨や線状降水帯による災害被害の軽減 には、これらを早期に予測し避難等の対応を促す ことが重要である.そのために、ライダーによる 鉛直方向の水蒸気量を高い時間分解能で計測す る手法が検討されている.本研究グループではソ ーラーブラインド領域である波長 266 nm のレー ザーを用いた水蒸気ラマンライダーを開発して おり、京都大学生存圏研究所(滋賀県甲賀市)に 設置し1年間の連続観測結果を報告した¹⁾.本発 表では同型のラマンライダーを東京都渋谷区に 設置し得られた水蒸気量の観測結果を報告する.

Table 1 Specifications of Raman lidar

Laser	Nd:YAG
Wavelength	266 nm
Pulse energy	50 mJ
Pulse duration	7 nsec
Repetition rate	10 Hz
Beam divergence	0.5 mrad
Beam expander	× 3
Telescope	Cassegrain
Telescope diameter	20 cm
Telescope field of view	4.5 mrad

Fig. 1 Schematic setup of water vapor Raman lidar. BE: beam expander; LM: laser mirror; FL: focusing lens; DBS: dichroic beam splitter; IF: interference filter; PMT: photomultiplier tube.

2. ラマンライダーの構成

本研究で使用したラマンライダーの仕様を Table 1に,構成図をFig. 1に示す.本ライダーは, 波長 266 nm のレーザー,望遠鏡,光子計数とア ナログ測定を同時に測定可能な分光検出部,デー タ処理部で構成される.受信した散乱光は水蒸 気・酸素・窒素の3チャンネルに分けて検出した. 水蒸気量は、3 チャンネルのラマン散乱光の計測 結果からオゾン吸収の影響を補正して算出され た²⁾.

3. ラジオゾンデとの比較

測定は英弘精機(株)本社屋上(35.7°N, 139.7°E, 標高50 m)にて実施され,日本時間2020年7月 26から27日にかけて8回のラジオゾンデを放球 し,ラマンライダーの水蒸気プロファイルと比較 した.その例として7月26日の13:30および7 月27日00:00の比較結果をFig.2に示す.ラマ ンライダーによる測定は15分間の積算値を用い, 高度400mまでは75m移動平均、400m以上では 150m移動平均とした.また,高度600m以下では アナログ計測値、600m以上では光子計数値を使 用した.昼夜どちらも高度200~1,500mにおいて ラジオゾンデと一致する結果が得られた.また, 8回の校正値のばらつきは3.7%であった.

Fig. 2 Vertical water vapor mixing ratio profiles obtained by Raman lidar and radiosonde in (a) daytime (JST 7/26 13:30) and (b) night (JST 7/27 00:00).

4. 水蒸気量の連続測定

7月26日から8月3日までの8日間の水蒸気プ ロファイルを Fig.3に示す.移動平均等の処理方 法は Fig.2と同様とした.梅雨明け(東京:8月1 日)前後を含む大気境界層内の水蒸気量の時空間 変動を連続的に捉えることができた.また,雲が 低い場合などを除き,昼夜を問わず高度 200~ 1,500 mにおいて水蒸気プロファイルを観測できた.

Fig. 3 Time series of vertical water vapor profile observed from 7/26 to 8/3.

5. まとめと今後の展望

波長 266 nm のレーザーを用いたラマンライダ ーを東京に設置して水蒸気量を計測し,高度 200 ~1,500 mにおいてラジオゾンデと一致する結果 が得られた.また,1週間の連続測定でも同様に 高度 1,500m まで測定できた.今後は,水蒸気量 計測を継続し,定期的なラジオゾンデとの比較に より長期間の測定精度や安定性を評価し,可搬型 ラマンライダーの開発を目指す.さらに,本ラマ ンライダーの水蒸気データとドップラーライダ ーによる風向・風速データを組み合わせたデータ 活用も検討していく予定である.

参考文献

1) 鳥取裕作 ほか,第 37 回レーザーセンシング シンポジウム, P29 (2019).

2) Renaut, D., Pourny, C., and Capitini, R., Opt. Lett., 5, 232-235 (1980).