下層水蒸気の積乱雲の発生発達への寄与

吉田 智¹, 酒井 哲¹, 永井 智広¹, 小司 禎教¹, 瀬古 弘¹ 「気象研究所(〒305-0052 茨城県つくば市長峰1-1)

Contribution of low-level moisture for initiation and development of cumulonimbus

Satoru YOSHIDA¹, Tetsu SAKAI¹, Tomohiro Nagai¹, Yoshinori SHOJI¹, and Hiromu SEKO¹ ¹Meteorological Research Institute, 1-1 Nagamine, Tsukuba, Ibaragi 305-0052

Abstract: Initiation and development of a cumulonimbus initiated by sea breeze (SB) on 2 September 2018 near Tokyo International Airport were clearly observed by Doppler lidars and radars. The east-southeasterly SB produced strong convergence exceeding $5x10^{-3}$ s⁻¹ near ground with northeasterly ambient inland wind on ground, resulting the initiation of the cumulonimbus. At 10:35 UTC the first radar echo of the cumulonimbus was detected and, then, at 11:00 the cumulonimbus passed over a water vapor Raman lidar, which provided vertical profiles of water vapor mixing ratio (WVMR). The RL observation results indicate the increase of WVMR at low-level from 09:00 to 11:00. Convective Inhibition (CIN) was calculated by RL data set and vertical profiles of pressure and temperature obtained at Tateno. The CIN increased from -33 J/kg at 09:00 to -7 J/kg at 11:00, indicating that the low-level moisture increase had large impact on the initiation and development of the cumulonimbus.

Key Words: Water vapor lidar, Doppler lidar, convection initiation, convective inhibition

1. はじめに

海上から陸上へ吹く海風(sea breeze, SB)は,比 較的低温の地上風で数百メートルから 1km 程度 までの厚みを持つ. SB が陸上の気流と収束(sea breeze front; SBF)を形成した場合,積乱雲が発生 し、時に地上に豪雨をもたらす.気象数値予報モ デル開発において積乱雲発生・発達の予測が課題 の一つであることを考慮すると,SB による積乱 雲の発生・発達メカニズムの解明は,数値モデル の予報精度改善に貢献する重要な研究である.

これまでドップラライダ観測を用いて、SBF に 伴う対流の発生について研究が進められている ⁽¹⁾.しかしながら,対流の発生・発達に大きな影響を及ぼす下層水蒸気の観測はなされていない.

気象研究所では、2017年より3年間,夏季に羽 田空港の周辺で、可搬型水蒸気ラマンライダ(以降,RL)を用いて水蒸気量の鉛直プロファイルを 観測した.本稿では羽田空港の地上気象測器デー タと RL データの解析を行い、下層水蒸気の積乱 雲発生・発達への影響を明らかにする.

2. 観測について

RL は気象研が開発した水蒸気ラマンライダで ある.Nd:YAG レーザを用いて 355nm のレーザ光 パルスを生成し,鉛直上向きに照射する.窒素分 子および水蒸気分子のラマン散乱光を望遠鏡で 受光し,その強度比から水蒸気混合比(water vapor mixing ratio; WVMR)の鉛直プロファイルを得る ⁽²⁾.本稿では,2018年9月2日の10時から12時 (UTC,以後同じ)に羽田空港周辺で発生・発達 した積乱雲について下層水蒸気の積乱雲の発生 発達への寄与を示す.本稿の解析では,RL に加 えて羽田空港で現業利用しているドップラライ ダ1号機(DL1)および2号機(DL2),ドップラレー ダ(DRAW),シーロメータ,地上気象観測およ び川崎人工島の地上気象観測データを用いた.

3. 観測結果

Figure 1 に 10 時 32 分における DL2(▽) の仰角 0.7 度におけるドップラ速度の PPI を示す. 10 時 頃までは,地上付近では北東風が卓越していた. 10 時過ぎから東南東の SB が(黒矢印)が羽田空港 付近に流入することにより,SBF(ピンクの破線) が形成され,積乱雲が発生した.

川崎人工島(○)の地上気象観測より,SB は 北東風と比較し低温であることがわかっている. 北東風とSBがDL2の南約5kmでSBFを形成し, その北側にある羽田DRAWで,この積乱雲のフ ァーストエコーが確認された(10:35,水色の実線). この後,SBF は徐々に北上しながら,11 時頃に RLの上空を通過し,11 時 30 分頃にDL2 上空を 通過した.SBFの北上に伴い,発生した積乱雲は 発達を続け,12 時 10 分にはSB が弱まり,その 後積乱雲も衰退を始めた.

Figure2 に RL 観測により得られた WVMR の鉛 直プロファイルを示す. 同図より, SBF が RL に 到達する 11 時まで大気下層で水蒸気量が徐々に 上昇している. ドップラライダや地上気象観測の 風分布を考慮すると, 下層の北東風により水蒸気 量が増大していたと考えられる. また, SBF が到 達する 11 時には下層の水蒸気量が急増している.

4. 考察とまとめ

Figure 3に RL から得た上空の WVMR (高度 60m, 285m), 羽田空港地上気象観測で得た地上の WVMR, 近隣の GNSS サイトでの可降水量を示す. 同図に示す通り,地上の WVMR は上昇傾向を示すものの,11時にみられる 60m や 285m 高度の WVMR の急増は見られない. このことから 11時の上空の WVMR の急増は北東風に起因する上昇ではなく, RL 付近の局所的な現象が原因と考えられる. 11時に SBF が RL に到達したことを考慮すると, WVMR の急増は比較的暖かい北東風の気塊を SB がまくり上げた結果と考えられる.

RL 観測点での高度 285m の大気の自由対流高 度(level of free convection; LFC)と対流抑制 (convective inhibition; CIN)をRLの観測結果か ら算出した(Figure 4).ここで、気温・気圧の鉛 直プロファイルは12時に観測した館野のゾンデ データを用いた.下層での水蒸気量の増加により、 LFCと、CINが大きく変化している.即ち、9時 から11時までの2時間でCINが-33J/kgから-7J/kg に増加、LFCは1.7kmから1.1kmに減少しており、 対流がより発生しやすい環境になっていた.下層 の水蒸気増加により対流が発生しやすい環境に 変化している中で、SBFに伴う上昇気流がトリガ ーとなり、対流が発生・発達したと考えられる.

謝 辞

本研究の一部は JSPS 科研費(17H00852, 19H01983)の助成を受けた.東京湾環境情報セン ターより川崎人工島の気象データの提供を受けた.ここに謝意を表する.

参考文献

- H. Iwai et al, 2018: Case study on convection initiation associated with an isolated convective storm developed over flat terrain during TOMACS. J. Meteor. Soc. Japan, 96A, 3-23.
- 2) T. Sakai et al., Automated compact mobile Raman lidar for water vapor measurement: instrument description and validation by comparison with radiosonde, GNSS, and high-resolution objective analysis, Atmos. Meas. Tech., 12, 313–326, 2019.

Figure1: A PPI image of Doppler velocity observed by the DL2 at elevation of 0.7°. Black and orange arrows represent SB and ground wind. Solid blue and pink dotted lines indicate radar echo exceeding 10 dBZ and SBF, respectively.

Figure 2: Time-height plot of WVMR observed by the RL.

Figure 3: WVMR at altitudes of 60 m and 285 m estimated by the RL, WVMR at ground, and precipitable water vapor observed by the nearest GNSS station.

Figure 4: level of free convection (LFC) and convective inhibition (CIN) calculated with the RL data set. Note that vertical profiles of pressure and temperature are obtained from high-altitude meteorological data at Tateno, Ibaraki