気温観測用 HSRL に用いるカリウムファラデーフィルタの最適設計

菅原 悠真, 阿保 真

首都大学東京 システムデザイン研究科 (〒191-0065 東京都日野市旭が丘 6-6)

Optimal design of K Faraday filter for atmospheric temperature measurements with HSRL technique

Yuma SUGAWARA and Makoto ABO

Tokyo Metropolitan Univ., 6-6 Asahigaoka, Hino, Tokyo 191-0065

Abstract: A high-spectral-resolution lidar (HSRL) using a potassium Faraday filter was proposed for temperature profile measurements in daytime. The Faraday filter acts as a blocking filter for suppression of narrow Mie scattering, and a very narrow filter for getting temperature information from Rayleigh-Brillouin spectrum. Mie scattering leak causes large temperature error. Therefore we design K Faraday filter in consideration of Mie scattering transmittance. We propose a optimal combination of filter parameters so as to minimize the temperature error.

Key Words: temperature, high-spectral-resolution lidar, Faraday filter

1 はじめに

気温の高度分布情報は、気象予報モデルの基礎デ ータとして重要であるとともに、近年は竜巻、ゲリ ラ豪雨など局地的災害予測を行う上でも必要性が 高まっている.現在用いられているラジオゾンデは 測定場所に制限があり連続測定が困難であるため、 高度分布の連続測定が可能なライダーによる気温 測定手法の確立が求められている.

特に下部対流圏の気温高度分布観測用ライダー としては、雲やエアロゾルからの散乱による影響を 十分除去する必要があり、昼間の観測が必須である. 我々は金属蒸気吸収フィルタを用いた高スペクト ル分解能ライダー(HSRL)¹⁾を改良し,昼間観測のた めに背景光除去効果のあるファラデーフィルタを 使用したシステムを提案している²⁾.

本研究では、地表面付近から気温変動の大きい高度 2km までの気温を、日中においても高精度に計測 することのできる HSRL の実現を目標とし、カリウ ムファラデーフィルタを用いた HSRL の実用化に向 け、ミー散乱が気温測定誤差に与える影響について 検討し、統計誤差や磁場誤差も考慮した上で、測定 誤差が最小となる最適なフィルタ組合せを提案す る.

HSRLによる気温測定原理

HSRL による気温の測定原理は、大気温度並び衝突により変化する大気分子からのレイリーブリル アン(RB)散乱光スペクトル拡がり40を、帯域幅の 異なる2つの狭帯域フィルタを用いて測定し、透過 光の強度比の温度依存性から大気温度を求める.

ファラデーフィルタ³⁾は金属蒸気フィルタに磁場 をかけ,前後に偏光子を直交して置く構造となって おり,磁場,セル温度,セルの長さの組合せにより, 急峻な特性を得られることができる.また,帯域外 遮断特性であるため昼間の背景光除去効果があり 昼間の気温観測に適している.

HSRL における気温 T_A における気温測定の統計誤 差 $\varepsilon_T(T_A)$ は,信号の統計誤差 ε_S と2つのフィルタの 透過量比 $R(T_A)$,気温に対する透過量比の変化率 $\Delta R(T_A)/\Delta T_A$ により、次式で求められる.

$$\varepsilon_T(T_A) = \varepsilon_S R(T_A) \frac{\Delta T_A}{\Delta R(T_A)}$$
 (1)

ここで、2つのフィルタの透過量比 Rは、フィルタ #1, #2の RB 散乱スペクトル透過量 Q_1, Q_2 により、次 式で求められる.ただし、 $Q_1 < Q_2$ とする.

$$R = \frac{Q_1}{Q_2} \tag{2}$$

なお信号の統計誤差εsは2つのフィルタの信号強 度で決まり,背景光を無視すると各フィルタの透過 量の逆数の2乗平均に比例する

3 ファラデーフィルターの最適設計法

今回装置の小型を念頭に2つのファラデーフィル タは同じ温度とし、磁場を切り替える1フィルタ方 式とする.最適設計のためには、ミー散乱遮断率を 考慮しつつ、統計誤差と磁場誤差をそれぞれ最小と すればよい.RB散乱のモデルとして、Tentiらが提案 した S6 モデル⁴⁾を用いている.

3.1 ミー散乱成分混入の影響

ミー散乱のスペクトル幅をレーザ線幅と等しい として 100MHzとし、このスペクトルのフィルタ透 過量をミー散乱透過量とする.セル温度 100℃と 110℃の磁場に対するミー散乱透過量を Fig.1 に示す. ミー散乱透過量は磁場に対して増加し、温度に対し て減少する特性がある。ミー散乱成分が RB 透過量 に混入したときの透過量比 *R* は次式で表せる.

$$R' = \frac{Q_1 + M_1}{Q_2 + M_2} \quad (3)$$

ここで, M₁, M₂はミー散乱透過量である. ミー散 乱の透過量が加わると Rが Rに変わり気温測定誤差 が生じる. 散乱比を 10 とし,ミー散乱透過量を 10⁻⁶ 以下にすることで気温測定誤差は 0.05K 以下になる ことがシミュレーションにより分かった. この条件 でファラデーフィルタのセル温度毎の磁場の上限 を決定した.

Fig.1 Transmittance of Mie scattering component as a function of magnetic field of a filter. (Cell temperature:100°C and 110°C)

3.2 統計誤差の最小化

式(1)の気温測定の統計誤差は、透過量比感度ΔR/ Rとε_sの積で決まる.透過量パラメータを用いて変形 した(4)式を評価関数 E として, E が最小となる組合 せが統計誤差最小となる.

$$E = \frac{1 + \frac{\Delta Q_2}{Q_2}}{\frac{\Delta Q_1}{Q_1} - \frac{\Delta Q_2}{Q_2}} \sqrt{\frac{1}{Q_1} + \frac{1}{Q_2}}$$
(4)

Δ*R*/*R*を小さくするためには、2 つのフィルタの透 過量変化率Δ*Q*/*Q*の差を大きくすると良い.Δ*Q*/*Q*は Fig.2 のような特性を持つ.そこで、各セル温度に対 して、一つのフィルタはΔ*Q*/*Q*が最大となる磁場とし、 もう一つのフィルタの磁場を評価関数が最小にな る組合せを求めると、最適な組合せは、セル温度 108℃、磁場 52G と 290G となった.

Fig.2 Filter sensitivity as a function of magnetic field of a filter. (Cell temperature: 90° C, 120° C and 150° C)

3.3 磁場誤差の最小化

フィルタの磁場変動による誤差は大きいが±1G 程度の範囲で最適点が存在する.290G付近のフィル タのRB透過量をFig.3に示す.磁場に対する透過量 の変曲点が磁場に対して安定しているため,289.1G が磁場誤差が最小となる.Table.1で示した仕様のラ イダーシステムでの気温に誤差に換算した統計誤 差と磁場変動を±0.02%としたときの磁場誤差を Fig.4 に示す.統計誤差の変化に比べて磁場誤差の変 化の方が大きいことがわかる.

以上を総合し、最適仕様としてセル温度 108℃, 磁場 52.7G と 289.1G の組合せが求められた.この時 ミー散乱による誤差 0.03K, 統計誤差 0.57K, 磁場誤 差 0.03K となり高度 2km の Total 気温誤差は 0.63K となる.

Fig.3 Rayleigh-Brillouin scattering transmittance as a function of magnetic field of a filter. (Cell temperature:108℃)

Table 1. Lidar parameters for temperature error simulation

Pulse Energy	1mJ
Pulse Repetition Rate	10kHz
Wavelength	770.108nm
Telescope Aperture	20cm
Range Resolution	200m
Average Time	10min

Fig.4 Statistical error and magnetic field stability error as a function of magnetic field of the filter #2.
(Cell temperature: 108°C, magnetic field of the filter #1: 52.7G)

4 おわりに

ミー散乱成分混入の影響を考慮した上で、気温測 定誤差が最小となる最適組合せをシミュレーショ ンにより決定した.今後はカリウムファラデーフィ ルタを用いた気温計測を行い誤差の評価を行う.

参考文献

- 1) H.Shimizu et al., Appl. Opt. 22 (1983) 1373.
- 2) 有賀他, 第33回レーザセンシングシンポジウム,
- No. P-5, 2015.
- 3) Zhang et al., IEEE J. Quant. Elec. 37 (2001) 372.
- 4) G.Tenti et al., Can. J. Phys. 52 (1974) 285.