偏光解消度を用いた多視野角・多重散乱偏光ライダーによる 大気粒子タイプの解析

藤川 雅大¹, 岡本 創², 佐藤 可織², 西澤 智明³, 杉本 伸夫³, 神 慶孝³,工藤 玲 ⁴. 鷹野 敏明⁵

> ¹九州大学大学院総合理工学府 ²九州大学応用力学研究所 ³国立環境研究所 ⁴気象庁気象研究所 ⁵千葉大学大学院工学研究院

Particle type discrimination by Multi-Field of view Multiple-Scattering Polarization Lidar.

Masahiro FUJIKAWA¹, Hajime OKAMOTO², Kaori SATO², Tomoaki NISHIZAWA³, Nobuo SUGIMOTO³, Yoshitaka JIN³, Rei KUDO⁴, and Toshiaki TAKANO⁵

¹Interdisciplinary Graduate School of Engineering, Kyushu University
² Research Institute for Applied Mechanics, Kyushu University
³ National Institute for Environmental Studies (NIES)
⁴Meteorological Research Institute, Japan Meteorological Agency
⁵Graduate School of Engineering, Chiba University

Abstract: We have developed a particle type discrimination method for the Multi-Field of view Multiple-Scattering Polarization Lidar (MFMSPL) system that is able to observe both parallel and perpendicular signals from optically thick clouds. It was possible to discriminate clouds, rain, aerosols, and fully attenuated pixels by the algorithm on basis of differences in their multiple-scattering characteristics. In addition, cloud phase was also partitioned into liquid and ice combining the attenuated backscattering coefficient and depolarization ratios. The algorithm was tested by simultaneous 95GHz cloud radar and rain gauge measurements.

Key Words: LIDAR, Multiple-scattering, Depolarization ratio

1. はじめに

雲-エアロゾル相互作用は、エアロゾルが雲と 降水形成に大きな影響を与えるために生じてい ると考えられるが、その詳細なメガニズムはい まだよく把握されておらず、そのため気候変動 における最大の不確定要素の一つである。雲-エアロゾル相互作用の解明のためには、観測に おいて雲の全域を捉え、エアロゾルと雲、及び 降水を明確に識別しなくてはならない。

Aqua 衛星/MODIS センサー等による水雲の 光学的厚さの全球解析から、大部分の水雲は光 学的厚さ4以上の水雲がその出現頻度分布の大 部分を占めることがわかっている。これに対し て、1mrad程度の視野角を持った通常の地上設 置型ライダーからは、光学的厚さが3程度まで の雲しか検出できないことから、水雲に対して 素底付近までの検出しかできないことが問題で あった。この問題を解決するために、広い視野 角を持った多重散乱ライダーが開発され、光学 的厚さ 20 以上の雲まで観測が可能であること が示された $^{1,2)}$ 。しかし、これらのライダーでは 重要な微物理量の一つである偏光解消度が得ら れなかった。そこで、地上観測で初めて広視野 角でライダー後方散乱係数と偏光解消度が観測 可能な多視野角多重散乱偏光ライダー (MFMSPL:Multi-Field of view Multiple-Scattering Polarization Lidar)³⁾が開発された。

ー方で、CALIPSO 衛星/CALIOP ライダーと いった衛星に搭載されたライダーはフットプリ ントが大きく、多重散乱光を多く観測するため 光学的に厚い雲まで観測できる。このため、従 来型の地上ライダーや衛星搭載受動型センサー からは十分に得られなかった水雲の鉛直構造が 解析できると期待されるが、それには微物理特 性を良く反映する偏光解消度の解釈や、使用す るアルゴリズムによって雲と霧雨、エアロゾル の識別に不確定性が存在する 4)といった課題が ある。

本研究では、衛星観測を再現できる MFMSPL

を使用し、上述した衛星ライダー解析における 課題を改善する事を目的として雲(水粒子、氷粒 子)、雨、エアロゾルの判別を行うタイプ識別手 法の開発を行った。

2. 解析手法

2.1 校正手法

MFMSPL は国立環境研究所(NIES)にて 2014 年6月7日より連続観測を開始している。10mrad の視野角を持つ鏡筒が4つあり、それを天頂方向 から 10mrad ずつ傾け、片側合計 40mrad の視野 角の観測を行う。さらに、偏光解消度を得るため に、それぞれの角度の鏡筒を平行成分と垂直成分 の2つずつにすることで、合計8チャンネル(Ch) の同時観測を行っている。奇数番目の Ch は平行 成分を、偶数番目の Ch は垂直成分を示し、Ch.1, Ch.3, Ch.5, Ch.7 の天頂角はそれぞれ 0°, 10mrad, 20mrad, 30mrad である。時間・高度分 解能はそれぞれ 10 秒·6m で、解析の際には解像 度を5分-48mに平均化した結果を用いている。 得られた信号の絶対校正は、NIESのミー散乱ライ ダーと MFMSPL の真上向きの平行成分用のチャ ンネル(Ch.1)の晴天域のデータを用い多重散乱の 影響の少ない晴天時のエアロゾルを同時観測し、 信号を比較することで実施した。次にやはり晴天 時に全ての鏡筒を真上に向け、偏光も全て平行成 分に設定した観測をすることで、各チャンネルの 感度を合わせ、相対校正を実施し、絶対校正と合 わせて全チャンネルの最終的な校正を行った。

2.2 ノイズマスク

高度20km付近のデータを用いて各チャンネル の最低検出感度を求め、対象とするビンの信号強 度が最低検出感度より高い信号は有意な信号と した。

2.3 雲検出

雲底の特定には Ch.1,2 を用いた。具体的には、 観測船「みらい」による先行研究 ⁵により算出さ れた後方散乱係数の閾値に加え、後方散乱係数の 鉛直方向の微係数も考慮し、それを全チャンネル 共通の雲底として、それぞれのチャンネルで雲底 より上の高度における有意な信号を雲とした。

2.4 完全減衰の判定

雲が存在するレコードでは、雲によるライダー 光の減衰によって、ノイズなのか雲やエアロゾル が検出できなかったのか判定できない場合があ る。2.2 のノイズ判定から検出される雲の最大高 度より上の高度において受信信号がノイズ以下 となる場合で、その鉛直ビンが鉛直方向に3層連 続する場合、雲頂より高高度のビンを全て完全減 衰とした。ただし、さらに高高度で雲が検出され た場合、そのレコードでの完全減衰の判定をリセ ットし、その高度から再び判定するようにした。

2.5 エアロゾル・降水判定

エアロゾルと降水を識別するため、雲底下にお いて、Ch.1 以外の平行成分(Ch3,5,7)で有意であ る時に、垂直成分用のチャンネル Ch.4,6,8 で有 意な信号が雲底から鉛直下向きに2層連続した場 合に降水とし、それ以外をエアロゾルとした。

2.6 雲粒子の相識別

雲の相識別にはライダー光の減衰量と偏光解 消度を組み合わせて利用することが有効である 事がモンテカルロ法による理論計算と衛星搭載 ライダー観測から知られている ⁶⁾。まず、2.3 で 検出された雲域での各チャンネルの偏光解消度 と後方散乱係数の減衰の関係を温度毎に調べた。 2015年3月~10月のCh.3,4にて観測された雲の 偏光解消度(δ)と鉛直方向に連続した後方散乱係 数(β)の比($x' = \log_{10}\beta(R)/\log_{10}\beta(R + \Delta R)$)の関係 を温度Tについて全ての温度帯、氷粒子が支配的 であると考えられる T<-20℃、及びほぼ水粒子で ある T>5℃の3つのカテゴリーに分けて解析し た結果をそれぞれ Fig.1(a),(b),(c)に示す。Ch.3,4 で観測される水雲のδは、水雲の場合は雲底付近 で0に近い低い値から高度が高くなるほど多重散 乱の影響を受けて高くなる傾向があり、βの大き な減衰を示す x'は大きくなる。一方氷雲の場合、 δが 0.2 から 0.8 の間の値をとるが、x'は水雲に 比べて小さくなる傾向にある。これらに基づいて Ch.3,4の観測量を用いて、このうち x'<0.2 かつ 0.2 < δ <0.8 に当てはまるものを氷雲、それ以 外を水雲とした。これは水雲のみが存在すると考 えられる温度 T>5℃で解析した x'とδの関係とも 整合的であった。

Fig.1 Two-dimensional frequency distributions of clouds in terms of and attenuated backscattering coefficients (β) for successive layers (x') and depolarization ratio (δ) using Ch.3and Ch.4 on March ~ October 2015 for (a) all temperature, (b) Only for T < -20°C, and (c) Only for T > 5°C.

3. 解析結果と展望

2015年3月7日にCh.1で観測されたノイズマ スクをかける前後の減衰後方散乱係数の時間高 度断面図をそれぞれ Fig.2(a)と(b)に示す。ノイズ マスクによって有意な信号とされたもののうち、 さらに雲マスクを適用する事でCh.1によって有 意な信号とされる領域のうち雲域が特定された (Fig.2(c))。

同様にすべてのチャンネルのデータに対して ノイズマスクを適用し、さらに粒子タイプ識別ア ルゴリズムを適用した。Fig.3(a)ではこれらで少 なくとも一つのチャンネルで有意と判定された 領域を示した。Fig.3(b)はその領域におけるタイ プ識別結果である。UTC 0~20000 秒,43200~ 57600 秒付近において、それぞれ降水が検出され ていることがわかる。これらの降水は雲レーダや 降雨計及び感雨計で降水が観測された時間帯と 良い一致を示している(Fig.4)。

雲の相識別の解析結果として 2015 年 3 月 4 日 と 2015 年 3 月 20 日の事例を示す(Fig.5)。3 月 4 日の高度 8~10km の雲は氷雲と判定されたが、 この高度領域の気温は-40℃であり、妥当な結果 であったと考えられる。また、3 月 20 の高度 0~1km の雲域は水雲であると判定されており、 これらの気温は 8℃前後であった事からこれも妥 当な結果であったと考えられる。

Fig.2 Time-height plot of attenuated backscattering coefficient from observed by MFMSPL (Ch.1) on 7th March 2015 (a) before noise mask, (b) after noise mask, (c) after cloud mask.

Fig.3 (a) Target area observed by MFMSPL combining all 8 channels, i.e., where lidar signal of at least one channel exceeded noise level, for the same data as in Fig.2.

(b) Results of the particle type discrimination applied to the target area shown in (a).

Fig.4 (a) Time-height plot of hydrometeor echo observed by 95GHz radar (FALCON-I) on 7th March 2015.

(b) Precipitation rate observed by rain gauge on the same day. Note that the rate is estimated for every 10 minutes and 0mm indicate precipitation rate observed by rain sensor was smaller than 5mm/10min.

Fig.5 Time-height cross section of cloud particle phase (a) on 4th March 2015, and (b) on 20th March 2015.

4. まとめと展望

MFMSPL の各チャンネルのノイズマスク及び 雲マスクを開発し、各チャンネルにおける有意信 号領域と完全減衰の判定を行った。全チャンネル を組み合わせることで、雲(氷、水)、エアロゾル、 雨の判別を行った結果、降水の識別結果が雲レー ダや降雨計、感雨計と良い整合性があることがわ かった。また、雲の層識別に関しては後方散乱係 数の減衰量と偏光解消度を用い、その結果は温度 帯から予測されるものとよく対応していた。

今後は開発した粒子タイプ識別手法の検証・改 良とそれぞれの粒子タイプの統計解析や雲-エア ロゾル相互作用の解析を実施する。また、 CALIPSO に搭載された CALIOP や EarthCARE に 搭載される高スペクトル分解ライダーATLID と いった衛星搭載ライダーに適用可能なアルゴリ ズムの開発及び検証を行う予定である。

謝 辞

本研究は JSPS 科研費 25247078 基盤研究(A) の助成を受けたものです。

参考文献

1) Cahalan, R. F., M. McGill, J. Kolasinski, T. Varnai, and K. Yetzer (2005), THOR-Cloud thickness from offbeam lidar returns, J. Atmos. Oceanic.Technol., 22, 605 – 627.

2) Davis, A. B. (2008), Multiple-scattering lidar from both sides of the clouds: Addressing internal structure, J.Geophys.Res., 113, D14S10, doi:10.1029/2 007JD009666.

3) Okamoto, H., K. Sato, T. Nishizawa, N. Sugimoto, Y. Jin, and A. Shimizu (2016), Depolarization Ratio of Clouds Measured by Multiple-Field of View Multiple Scattering Polarization Lidar, EPJ Web of Conferences11911,11007(2016),ILRC27,doi:10.1051 /epjconf/201611911007.

4) Cesana, G., H. chepfer, D. Winker, B. Getzewich, X. Cai, O. Jourdan, G. Mioche, H. Okamoto, Y. Hagihara, V. Noel, and M. Reverdy (2015), Using In-Situ Airborne Measurements to Evaluate Three Cloud Phase Products Derived from CALIPSO, J. Geophys.Res.Atmos.,121,5788–5808,doi: 10.1002/2015JD024334.

5) Okamoto, H., T. Nishizawa, T. Takemura, H. Kumagai, H. Kuroiwa, N. Sugimoto, I. Matsui, A. Shimizu, S. Emori, A. Kamei, and T. Nakajima (2007), Vertical cloud structure observed from shipborne radar and lidar: Midlatitude case study during the MR01/K02 cruise of the research vessel Mirai, J.Geophys.Res., 112, D08216, doi:10.1029/2006 JD007628.

6) Yoshida, R., H. Okamoto, Y. Hagihara, and H. Ishimoto (2010), Global analysis of cloud phase and ice crystal orientation from Cloud - Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO) data using attenuated backscattering and depolarization ratio, J. Geophys. Res., 115, D00H32, doi:10.1029/2009JD012334.