パワーエレクトロニクス用光プローブ電流センサの開発

花田 貴拓, 柄澤 大樹, 北澤 真, 佐藤 敏郎, 曽根原 誠 信州大学工学部先端磁気デバイス研 (〒380-8553 長野県長野市若里 4-17-1)

Development of optical probe current sensor using Kerr Effect for Power Electronics

T.Hanada, D.Karasawa, S.Kitazawa, T.Toshiro and M.Makoto

AMDL, Shinshu Univ., 4-17-1 Wakasato, Nagano, Nagano 380-8553

In this report, we present research on development on optical probe current sensor by using Kerr Effect of magnetic thin film. A fabricated optical probe current sensor, which consists of VCSEL(Vertical Cavity Surface Emitting LASER) light source, Glan-Thompson Prism, half-wave plate, Fe-Si/Ru thin film, PBS(Polarizing Beam Splitter), pin-PD and differential trans-impedance amplifier, exhibited a current sensing sensitivity of 1.06mV/A. By using the fabricated optical probe current sensor, the switching current measurement for SiC Power Modules has been demonstrated.

1. はじめに

パワーエレクトロニクスは電力の制御・変換を行うキー技術 であり、太陽光発電、エアコンなどの家庭電化製品、EV/HEV などに広く用いられている。EV/HEV で使用されているパワー コントロールユニット(PCU)^[1]では、バッテリ電圧の昇圧及び 充電のために双方向 DC-DC コンバータが使用され、同期電動 機の可変駆動のために三相インバータが使用されている。 EV/HEV 用 PCU 内には、バッテリ充放電モニタリングやモー タのトルク制御のために複数の電流センサが使用されており、 直流/交流電流計測が可能であり高電圧部分を含む主回路に対 して非接触で電流計測ができることが求められる。

現在の車載用電流センサは磁気ヨーク付きホールセンサが 主流であり、磁気ヨークのギャップ部に半導体ホールセンサを 配置して感度の向上を図ると共に、外乱ノイズにも強い利点を 持つ。しかし磁気ヨークを有するため小型化が困難であり、さ らに半導体ホールセンサは温度特性が悪いため温度補償回路 が必要になる。またセンサ伝送信号に金属ワイヤハーネスを用 いるため、PCU 内の電磁環境下ではハーネスに電磁ノイズが 重畳し、ノイズ対策が必要になる。

本研究は外部からの電磁ノイズの影響を受けない光プロー ブを利用した電流センシング方式として、磁性体の反射光の偏 光面が磁化の向きによって変化する磁気 Kerr 効果を利用した センシングに着目した。本稿では開発した光プローブ電流セン サモジュールの特性評価について報告する。

2. 磁気 Kerr 効果と光プローブ電流センサの原理

Fig. 1 に Kerr 効果を用いた光プローブ電流センサの動作原 理を示す。磁性体の磁気モーメントの向きを導体に流れる電流 方向と平行になるように導体上に磁性膜を設置する(磁性膜の 磁化容易軸方向と導体に流れる電流の方向を揃える)。次に入射 光(直線偏光)の入射面が磁性膜の磁化困難軸方向になるように 光を入射する。電流が流れていない場合(Fig.1(a))は横 Kerr 効 果が生じるため反射光は直線偏光のままであるが、導体に電流 Iが流れると磁性膜に電流磁界 H(D)が印加され磁気モーメント M が回転する。磁気モーメント M の回転により、x 軸方向に 磁化 M_x が生じ、この M_x により縦 Kerr 効果が生じる(Fig(b))。 反射光は Kerr 回転角 θ_k だけ主軸から傾いた楕円偏光となり、 Kerr 回転角 θ_k は磁化 M_x に比例する。磁性膜が磁気飽和する電 流 I_s 以上流れると(Fig.1(c))、磁気モーメントの向きと入射面が

平行となり、最大の Kerr 回転角 $\theta_{k,s}$ を得ることができる。電流 *I が* $0 \leq I \leq I_s$ の時、Kerr 回転角 θ_k の大きさは電流磁界の大きさ に応じて変化する。Kerr 回転角 θ_k と電流磁界 *H(I)*の関係は次 式で与えられる。

$$\theta_K \propto M_x \propto H(I) , 0 \le I \le I_s$$
 (1)

ここでは異方性磁界 H_k は磁性膜を磁気飽和させる磁界に一致 する。磁性膜を磁気飽和させる電流 I_s は異方性磁界 H_k に比例 するため、この異方性磁界 H_k を増大させることにより大電流 センシングが可能となる。

3. 磁気 Ker 効果を用いた光プローブ電流センサモジュールの 構造と動作試験

Fig.2 に二次試作光プローブ電流センサモジュールの構造図 を示す。このセンサは出力 1.3mW、波長帯 850nm の VCSEL 光源、グラントムソン偏光プリズム、半波長板、単磁区一軸磁 気異方性スリットパターン化 Fe-Si/Ru 磁性膜^[2]、PBS、P 及び S 偏光用のフォトダイオード、差動増幅回路から構成される。 電流が流れていない時、反射光は直線偏光であり、半波長板を 用いて偏光面を 45°回転させ、PBS により P 及び S 偏光に分 離される。この時、P 偏光と S 偏光強度が等しくなるように半 波長板の主軸を調節した。電流が流れると縦 Kerr 効果が生じ、 P 偏光と S 偏光の強度に差 ΔP が生じるこの ΔP に応じて、 PIN フォトダイオードと差動増幅回路で構成される光-電気変 換回路にて作動出力 V_o が出力される。

今回試作したセンサモジュールを用いて SiC パワーモジュ ールのスイッチング電流測定を行った。Fig.3 に測定結果を示 し、Fig.4 に本電流センサの比較対象として電流プローブ (Tektronix 社製:TCP0150)を用いて測定した結果を示す。同図 より最大 140A までの電流を測定することができ、感度は 1.06mv/A であった。しかし本センサの出力ノイズは 70mV_{pp} であった。更なるセンサ感度の向上のためにセンサに重畳する ノイズの低減が今後必要となる。

Fig.2 Configuration of the optical probe current sensor

Fig.3 Sensor output voltage using our optical current sensor

Fig.4 Sensor output voltage using current probe

4. まとめ

本論文では、磁気 Kerr 効果を用いた光プローブ電流センサ の試作と SiC パワーモジュール電流の測定結果について報告 した。本電流センサを用いて 140A まで電流を測定でき、感度 は 1.06mV/A、出力ノイズは 70mV_p-pであった。今後はセンサ のさらなる小型化とセンサ感度の向上が課題となる。

参考文献

 Y. Setaka, H. Ishiyama, M. Inagaki, K. mamitsu, T. Kikuchi; DENSO Technical Review, Vol.14, pp.47-52, (2009)
森崎裕基, 柄澤大樹, 佐藤敏郎, 曽根原誠, 高木宏幸, 井上 輝光: パターン化 Fe-Si/Ru 形状磁気異方性膜の磁区構造, 電 気学会マグネティックス研究会, MAG-13-160, 2013