ファラデーフィルタを用いた気温観測用 HSRL における磁場変動の影響 Influence of the Magnetic Field Changes in HSRL with a Faraday Filter for Atmospheric Temperature Measurements 有賀 幸輝、阿保 真、柴田 泰邦 Kouki Aruga, Makoto Abo, and Yasukuni Shibata 首都大学東京 システムデザイン研究科

Graduate School of System Design, Tokyo Metropolitan University

Abstract: A high-spectral-resolution lidar (HSRL) using a potassium Faraday filter is proposed for temperature measurements in daytime. The Faraday filter acts as a blocking filter for suppression of narrow Mie scattering, and a very narrow filter for getting temperature information from Rayleigh-Brillouin spectrum. We find that the temperature measurement error caused by fluctuations of the magnetic field is not negligible. We propose a new combination of filter parameters which is free from a factor of magnetic field change .

<u>1.はじめに</u>

気温の高度分布測定は、気象予報の基礎データと して重要であるとともに、最近は竜巻、局地的大雨 などの局地的な気象災害予測を行う上でも必要性が 高まっている。現在、対流圏から成層圏の気温高度 分布測定は主にラジオゾンデにより行われているが、 測定場所に制限があり連続観測が困難であるため、 高度分布の連続測定が可能なライダーによる気温測 定手法の確立が求められている。

対流圏の気温高度分布観測用ライダーとしては、 雲やエアロゾルからの散乱による影響を受けずに測 定が可能である金属蒸気吸収フィルタを用いた高ス ペクトル分解能ライダー(HSRL)^[1]が1つの候補 であるが、我々はこれを改良し、金属蒸気吸収フィ ルタの代わりに昼間観測のために背景光除去効果の あるファラデーフィルタの使用を提案し、試作した カリウムファラデーフィルタの透過特性について弱 磁場における理論値と実験値の違いを、ゼーマン分 裂した超微細構造の遷移確率を考慮することにより 修正することに成功した^[2]。

今回は、フィルタにかける磁場の安定度が気温測 定誤差に与える影響について検討した。その結果、 従来提案していたフィルタの組み合わせでは磁場が 1%変動しても大きな測定誤差を生じることがわか ったため、磁場の変動の影響が少ないフィルタの組 み合わせを提案する。

<u>2. HSRL による気温測定</u>

HSRL による気温の測定原理は、Fig.1 に示すように大気温度並びに衝突により変化する大気分子からの Rayleigh-Brillouin 散乱光スペクトル拡がりを、帯域幅の異なる2つの狭帯域フィルタを用いて測定

し、透過光の強度比の温度依存性から大気温度を求 める^[1]。

Fig.1 Block diagram of HSRL for Temperature measurement

従来の金属蒸気吸収フィルタは、セルの温度を変 えることにより吸収帯域幅を変えることが出来るが、 帯域中心部で強いミー散乱成分を押さえつつ狭い帯 域幅を得るのは困難であった。これに対しファラデ ーフィルタ^[3]は金属蒸気フィルタに磁場をかけ、前 後に偏光子を直交して置く構造となっており、磁場、 セル温度、セルの長さの組み合わせにより、急峻な 特性が得られるのが特徴である。また、帯域外が遮 断特性であるため昼間の背景光除去効果があり昼間 の気温観測に適している。

試作したファラデーフィルタのセル温度 110℃、 セル長 7.5cm、磁場 240G の透過特性の測定結果と 理論値を Fig.2 に示す。またセル温度 110℃、セル 長 7.5cm のカリウムファラデーフィルタにおいて磁 場を 0~350G に変動させたときの透過率とレイリ ースペクトルを Fig.3 に示す。磁場が変化していく と透過率の高い領域も変化していく様子が分かる。

Fig.2 Measured and calculated transmitssion spectra of the Faraday filter. Cell temperature is 110° C,length is 7.5cm,and magnetic field is 240G.

Fig.3 Transmission spectrum due to the change of the magnetic field (contour) and Rayleigh Spectrum.

<u>3. セルの磁場変動の影響を加味した気温測定誤差</u>のシミュレーション

HSRL における気温測定の統計誤差 $\varepsilon_T(T_A)$ は、信号の統計誤差 ε_S と透過量比 $R(T_A)$ 、気温に対する比の変化率 $\Delta T_A/\Delta R(T_A)$ により次式で求められる。

$$\varepsilon_T(T_A) = \varepsilon_S R(T_A) \frac{\Delta T_A}{\Delta R(T_A)}$$
 (1)

一方セルの磁場が±1%変動したときに生じる気 温測定誤差はシミュレーションにより求める。これ らの合計をトータル誤差とした。今回は統計誤差が 最も少ない組み合わせ(#1:セル温度 117℃、磁場 83G と 304G)と、磁場の変動の影響が最も少ない組 み合わせ(#2:セル温度 110℃、磁場 93G と 240G) の2つを比較検討した。シミュレーションで想定し たライダーシステムの仕様を Table 1 に、統計誤差、 磁場の変動に起因する誤差及びトータル誤差の高度 に対するシミュレーション結果を#1、#2 それぞれに ついて Fig.4 に示す。

#1 の組み合わせの場合、統計誤差は高度 5.5km まで 1K、磁場変動による誤差は高度 0.3~0.7km の 間でしか 1K 以下とならず、トータルでも同様であ った。一方、#2 の組み合わせの場合、統計誤差は高 度 4.9km まで 1K と#1 より若干悪いが、磁場変動 による誤差は 6km まで 1K 以下となり、トータルで は高度 3.8km で 1K となった。

Table 1. Lidar parameters

Altitude	0km~6km
Pulse power	1mJ
Pulse repetition rate	10kHz
Telescope Diameter	20cm
Range Resolution	200m
Accumulation time	10min

Fig.4 Temperature errors caused by signal statistical error, magnetic field stability and total error as a function of altitude.

<u>4.おわりに</u>

シミュレーションにより磁場の変動がある場合と ない場合において最も気温測定誤差が小さくなる組 み合わせが違うことが分かった。今後は実際の磁場 の変動と磁場の制御が可能かを確かめ、最適な組み 合わせを決定し、カリウムファラデーフィルタを用 いた気温計測を行い誤差の評価を行う。

<u>謝辞</u>本研究の一部は JSPS 科研費 26550014 の助 成を受けている。

参考文献

[1] H.Shimizu et al., Appl. Opt. 22, 9, 1373, 1983

[2] 有賀他、第 32 回レーザセンシングシンポジウム, No.P-14, 2014.

[3] Zhang et al., IEEE J.Quant. Elec. 37, 3, 372, 2001.