ラマンライダーと地上サンプリングデータによるライダー比の比較

Comparison of lidar ratio derived from Raman lidar and ground-based aerosol sampling

○恒吉智明¹、眞子直弘¹、齋藤隼人¹、Nofel Lagrosas^{1,2}、久世宏明¹

OTomoaki Tsuneyohsi¹), Naohiro Manago¹), Hayato Saito¹), Nofel Lagrosas^{1),2}) and Hiroaki Kuze¹)

¹⁾千葉大学環境リモートセンシング研究センター、²⁾ Manila Observatory

¹⁾ Center for Environmental Remote Sensing (CEReS), Chiba University, ²⁾ Manila Observatory

Abstract: Lidar ratio refers to the ratio between the aerosol extinction and backscattering coefficients. Precise values of lidar ratio are indispensable for solving the lidar equation when analyzing multi-wavelength lidar data. In this work, we compare the values derived from the Raman lidar measurement and those concurrently obtained from ground-based sampling measurement through Mie-scattering calculation.

1. はじめに

大気エアロゾルとは、大気中に浮游している自然発生や 人為起源による液体または固体の粒子である [1]。エアロ ゾル粒子は太陽放射を散乱・吸収することで気候を寒冷 化・温暖化させる直接効果とともに雲凝結核として雲の生 成に関わる間接効果を持っており、地球の放射収支に大き な影響を及ぼすことが指摘されている[2]。

ライダーはエアロゾルの特性の理解に役立つ [3]。千葉 大 CEReS ではこれまで大気データ収集ライダー (ADCL)を 用いて、対流圏エアロゾルと雲の計測を行ってきた [4.5]。 多波長ライダーデータの解析においては、解析の際に消散 係数と後方散乱係数の間に仮定するライダー比を波長ごと に正しく与えることが不可欠である。本研究では、波長 355 nm のレーザー光を照射して得られる波長 387 nm の窒 素ラマン信号からライダー比を導出し [6]、地上サンプリ ング測器データからミー散乱計算により導出したライダー 比との比較を行う。この比較に基づき、地上測器データか ら多波長のライダー比を導出する手法について検討する。

2. 理論

ラマン散乱とは、分子の振動、回転状態を変化させるこ とにより生じる散乱(非弾性散乱)を指し、散乱光の波長が 変化する(ラマンシフト)。観測では、ラマン散乱光を測定 すると同時にミー散乱光、レイリー散乱(弾性散乱)光も測 定し、大気分子の高度プロファイルを用いて大気分子によ るレイリー散乱の寄与を取り除く。これによりラマン散乱 信号からは(式 1)に示すように消散係数が、ラマン散乱信 号とミー散乱信号から(式 2)に示すように後方散乱係数が 求まり、これらによりライダー比を導出できる。

$$\times \frac{\exp\left\{-\int\limits_{z0}^{\infty} \left[\alpha_{\lambda ref}^{aer}(\xi) + \alpha_{\lambda ref}^{mol}(\xi)\right]\right\}}{\exp\left\{-\int\limits_{z0}^{z} \left[\alpha_{\lambda}^{aer}(\xi) + \alpha_{\lambda}^{mol}(\xi)\right]\right\}} - \beta_{mol}(z) \quad (2)$$

また、ライダー比は消散係数、単一散乱アルベド、位相 関数を用いて求めることができる。エアロゾルの形状とし て球状を仮定することで、通常のミー散乱の理論計算が適 用でき、粒径分布、複素屈折率を与える形でのモデル化が 可能である。本研究では、地上計測装置で計測した散乱係 数、吸収係数、粒径分布を用いて、粒径分布について 6個 (規格化定数、モード半径、幅それぞれ2個ずつ)、複素屈 折率について6個(実部2、虚部4)の計12個のパラメータ を仮定し、エアロゾルモデルへのフィッティングを行うこ とでこれらを求め、ライダー比を導出した。

3. 計測装置

本研究で使用したライダーは、千葉大学 CEReS の地上 設置 ADCL ライダーシステムのミー散乱、ラマン散乱鉛 直ライダーであり、動作波長は 355 nm (Continuum Surelite I-20,100 mJ/pulse)、パルス繰り返しは 20 Hz、望遠鏡直径は 35 cmで、観測は2015年7月28日に行った。ビームスプリッ タ、フィルタを用いて受信光をミー散乱チャンネル (355 nm) および窒素ラマン散乱チャンネル(387 nm) に分離し、 PMT (浜松ホトニクス, H10304-20-NN) によりフォトンカウ ンティングを行った。本研究ではミー散乱チャンネルと窒 素ラマン散乱チャンネルについて解析を行った。窒素ラマ ン散乱ライダーの解析の際に必要な窒素分子の高度プロフ アイルは、2015年7月28日21時00分(UTC+9:00)の舘野 (36.05°N, 140.12°E) におけるラジオゾンデデータから導出し た。同期計測により積算時間は全チャンネルで固定の 30 分(ショット数36,000)とした。

また、地上サンプリングは ADCL の地上校正値取得に使 用している地上計測装置を用いて、2015年7月22日に行 った。地上計測装置は、エーサロメータ (Magee AE31)、積 分型ネフェロメータ (TSI 3563)、パーティクルカウンタ (Rion KC-22B, Rion KC-01D) から成り、それぞれから、吸収 係数、散乱係数、粒径分布が得られる。

観測結果

ラマン信号については積算時間を 130 分とし、ノイズ軽 減のため、距離二乗補正信号 (Range Corrected Signal, RCS) を 求める際に移動平均を取り、さらに消散係数の導出の際に は多項式によるフィッティングを行った。Fig.1 の左に生 信号、中央に RCS と、RCS を高度 3~10 km において 3 次間 数でフィッティングした結果、右に消散係数をそれぞれミ ー散乱チャンネル、窒素ラマンチャンネルごとに示す。ま た、これらから導出したライダー比の高度分布を Fig. 2 に 示す。低高度でレーザー光と望遠鏡の視野角が完全に重な っていない部分、すなわち重なり関数の補正が必要な部分 は赤の点線で示した。

Fig. 1: Raw signal (left), RCS (center), and extinction coefficient (right).

Fig. 2: Vertical profile of lidar ratio

また、最適化されたエアロゾルのパラメータのうち 520 nm, 550 nmについて複素屈折率について仮定したパラメー タを Table 1 に、粒径分布について仮定したパラメータを Table 2 に示す。フィッティング結果を Fig.3 に、算出した 消散係数、単一散乱アルベド、散乱係数、後方散乱係数、 ライダー比を 520 nm について Table 3 に、また 550 nm につ いて Table 4 に示す。

TT 1 1 1	D 1.	1	r 1	1 C		• •
Table 1:	Resump	valueso	rcomp	iex ren	аспуе	index
10010 1 1	- coouning	100000	· · · · · · · · · · · · · · · · · · ·		cieta i e	

Complex refractive index			
Real part	Imaginary part		
n(450 nm) = 1.554292	k(370 nm) = 1.087215E-02		
n(700 nm) = 1.430423	k(520 nm) = 9.993178E-03		
	k (660 nm) = 1.387405E-02		
	k (950 nm) = 1.657150E-02		

Table 2: Resulting values of particle size distribution

Particle size distribution (bimodal lognormal distribution)					
Normalization constant	Mode radius (µm)	Width			
N1=2.083218E+01	M1=1.422699E-01	W1=1.365834E-01			
N2=6.610680E-01	M2=3.681453E-01	W2=2.543056E-01			

Table 3 : Result of fitting(520nm)

Extinction coefficient (km ⁻¹)	0.2242089	
Single scattering albedo	0.9213266	
Scattering coefficient (km ⁻¹)	0.20656962	
Back scattering coefficient (km ⁻¹ sr ⁻¹)	0.0528209	
Lidar ratio (sr)	42.44699986	

Fig. 3: Aerosol parameters from sampling instruments

Table 4 : Result of fitting(550nm)

0.2048667	
0.9134452	
0.1871345	
0.00433531	
47.25536018	

5. まとめ

ラマン散乱信号から得た消散係数は、値としては近いも のを得ることができたものの、Fg.1の右のようにピーク に対するフィッティングが合っておらず、改善が必要であ る。ライダー比については、低高度において地上測器と比 較するために、レーザー光と望遠鏡の視野角の重なりを補 正する重なり関数を適正に適用する必要がある。また、2 km 付近に見られる雲により、ライダー比が急激に増加し ているが、雑音の影響について評価が必要である。

また、地上測器のフィッティング結果は粒径分布の、特 に少粒径部分で計測値とフィッテイング結果にずれがみら れ、改善が必要である。

参考文献

 H. Seinfeld, S. N. Pandis, "Atmospheric Chemistry and Pysics, from Air Pollution to Climate Change", John Wiley, ISBN 0-471-17815-2, New York, 1998.

[2] H. Kuze, "Characterization of tropospheric aerosols by ground-based optical measurements", SPIE Newsroom, (URL: http://spie.org/x9118 4.xml), 2012.

[3] Russell, et al. "Methodology for error analysis and simulation of lidar aerosol measurements", Applied optics, vol. 18, no. 22, pp. 3783-3797, 1979.

[4] Y. Mabuchi, N. Manago, G. Bagtasa, H. Saito, N. Takeuchi, M. Yabuki, T. Shiina, H. Kuze, "Multi-wavelength lidar system for the characterization of trospheric aerosols and clouds", IGARSS, 2012 IEEE International, vol., no., pp.2505-2508, 2012.

[5] Y. Mabuchi, N. Manago, G. Bagtasa, H. Saito, Y. Kamiya, N. Takeuchi, M. Yabuki, T. Shiina, H. Kuze, "Measurement of urban aerosols in Chiba using Atmospheric Data Collection Lidar System", 31LSS 予稿集, pp.116-117, 2013.

[6] K.H. Lee and Y.M. Noh, "Multi-wavelength Raman LIDAR for Use in Determining the Microphysical, Optical, and Radiative Properties of Mixed Aerosols", AJAE, vol. 9-1, pp. 91-99, 2015.