A study on the data processing of the differential absorption lidar for measurements of atmospheric minor constituents

橋本英介、柴田泰邦、長澤親生 Eisuke Hashimoto, Yasukuni Shibata and Chikao Nagasawa

首都大学東京

Tokyo Metropolitan University

Abstract: In the analysis of differential absorption lidar (DIAL), the noise component included in the receiving signal affects strongly to the precision of the concentration measurement. The differentiation term in the DIAL equation is an essential element of the analysis, and it is a serious problem for the concentration retrieval of atmospheric minor constituents. In this paper we present a new method for the DIAL retrieval using running mean and smoothing differentiation in order to improve the accuracy of measurements.

1. はじめに

差分吸収ライダー(DIAL)は、オゾン(O₃)や二酸化炭素(CO₂) といった大気中の微量気体の濃度測定に広く用いられている。 DIALにおける濃度導出に用いられる方程式に含まれる微分(差 分)は、高周波透過フィルターとして働くため、雑音の高周波 成分が測定精度に大きく影響する。これは、特に微量気体の DIALによる濃度測定では重要な問題となる。

本研究では、一般に用いられている DIAL による濃度導出法 よりも高い測定精度を得るために、移動平均と平滑化微分法を 組み合わせたデータ処理法を提案し、計算機シミュレーション によりその有効性を検証した。

2. DIAL の濃度導出式

一般にDIALにおいて、高度*R*における微量気体の密度*n(R)* は、(1)式で導出される。

$$n(R) = \frac{1}{2(\sigma_{on} - \sigma_{off})} \frac{d}{dR} \ln \frac{N_{off}(R)}{N_{on}(R)}$$
(1)

ここで、 $\sigma_{on}, \sigma_{off}$ はそれぞれ on 波長と off 波長の吸収断面積、 N_{on}, N_{off} は受信信号強度である。(1)式には微分が含まれているため、数値計算上では(2)式による差分に置き換えられる。

$$\frac{d}{dR}f(R) = \frac{f(R_{i+1}) - f(R_i)}{R_{i+1} - R_i}$$
(2)

この際、受信信号に含まれる高周波の雑音成分が測定精度に大きく影響することが考えられる。

3. 雑音信号の解析

首都大学で実際に CO₂-DIAL により取得された受信信号(測 定時間:2011年5月15日3:01~3:32)から雑音の周波数解析 を行った。雑音の周波数スペクトルを Fig.1 に示す。雑音の周波 数が高周波におよぶ広い帯域を持っていることがわかる。した がって、測定精度の向上のためには、雑音に含まれる高周波成 分の平滑化が重要課題である。

Fig.1 Frequency spectrum of the noise component of the actual DIAL

4. 受信信号モデル

本研究では、データ処理方法の検討にあたり受信信号のモデ ルとして、先ず、大気分子密度に U.S.Standard モデルを用い、 微量気体として二酸化炭素の Fig.2 の濃度分布を仮定し、ライダ 一方程式により受信信号を作成した。次に、上記により得られ た受信信号に、実際のライダーによる雑音を加えることにより、 DIAL の on 波長、off 波長の受信信号を作成した。その結果を Fig.3 に示す。

Fig.2 A model profile of the CO_2 concentration in the atmosphere

Fig.3 Simulated on/off signal profiles of DIAL with noise components

5. 移動平均法と平滑化微分法

高周波成分を含むデータを平滑化する方法として移動平均法 がある。データ系列{*f*[*i*]}に対して、*N*を奇数としたとき*N*点 移動平均は(3)式によって定義されるデータ系列{*g*[*i*]}を生成す る。

$$g[i] = \sum_{j=-(N-1)/2}^{(N-1)/2} f[i+j]$$
(3)

これによりデータ系列 {g[i]} は、データ系列 {f[i]} を平滑化したデータとして得られる。

また、高周波成分を含むデータの平滑化された微分係数列を 求める方法として、平滑化微分法がある。データ系列{*f*[*i*]}に 対して、7 点平滑化微分法は(4)式によって定義される微分係数 列{*f*'[*i*]}を生成する。

$$f'[i] = (-f[i-3] - f[i-2] - f[i-1] + f[i+1] + f[i+2] + f[i+3])/12\Delta R$$
(4)

ここで、 ΔR は距離分解能である。平滑化微分法による微分係 数列 $\{f'[i]\}$ は、(2)式を用いたものよりも平滑化されたデータと して得られる。

6. データ処理方法の提案

従来の(2)式を用いた濃度導出法よりも高精度なデータ処理方 法として、私たちは移動平均法と平滑化微分法を組み合わせて 適用するデータ処理方法を提案する。データ処理の手順は次の 通りである。

- 線形に近いデータに移動平均法を適用するために、 *f*[*i*] = ln{*N_{off}*(*R_i*)/*N_{on}*(*R_i*)}とするデータ系列{*f*[*i*]} を用いる。これは(1)式の微分の中身である。このデータ系 列{*f*[*i*]}に移動平均法を適用し平滑化されたデータ系列 {*g*[*i*]}を生成する。
- 次に(1)式に含まれる微分係数をデータ系列 {g[i]} から導 出する。このときに平滑化微分法を適用する。これにより 求めた微分係数から(1)式によって高度ごとの濃度を導出す る。

距離分解能を75mとし、7点移動平均および7点平滑化微分 を用いた提案方法と、(2)式を用いた従来の方法による計算結果 の比較をFig.4に示す。また、Fig.4には7点移動平均のみを用 いた場合の計算結果も示す。Fig4.より、明らかに提案方法によ る計算濃度のほうがモデルからのばらつきが減少していること がわかる。

また、提案方法と移動平均のみ、および平滑化微分のみの計 算結果を比較する。Fig.5 は、それぞれの処理方法による計算結 果の平均誤差の推移である。これにより、提案方法によって高 い高度においても誤差が小さくなっていることがわかる。

Fig.4 Concentration profiles calculated by using the traditional method, the running mean method and the new method, respectively. (range resolution = 75m)

Fig.5 Comparison of averaged error profiles of the running mean method, the smoothing differentiation method and the new method

7. まとめ

本研究では、従来の濃度導出法よりも精度を向上させるため に、移動平均法と平滑化微分法を用いたデータ処理方法を提案 した。シミュレーションから、従来の方法に比べて、提案方法 を用いることで雑音によるばらつきが減少していることがわか った。また、移動平均法のみ、および平滑化微分法のみの場合 と比べても、提案方法が誤差の減少に有効であることがわかっ た。今後は、移動平均法と平滑化微分法の最適な点数、および 計算精度について定量的な検討を行っていく必要がある。

参考文献

1. Georg Beyerle and I. Stuart McDermid, "Altitude range resolution of differential absorption lidar ozone profiles," Appl. Opt. 38, 924–927 (1999).