Development of a differential absorption lidar for nitrogen dioxide measurement

中里真久¹、永井智広¹、酒井哲¹、内野修^{1,2}、真野裕三¹、入江仁士³、北和之⁴ Masahisa Nakazato¹, Tomohiro Nagai¹, Tetsu Sakai¹, Osamu Uchino^{1,2}, Yuzo Mano¹,

sanisa Nakazato, Tomoniro Nagar, Teisu Sakar, Osaniu Ocinio, Tuzo Mano,

Hitoshi Irie³, and Kazuyuki Kita⁴

1. 気象研究所、2. 国立環境研究所、3. 海洋研究開発機構、4. 茨城大学

1. Meteorological Research Institute, 2. National Institute of Environmental Studies,

3. Japan Agency for Marine-Earth Science and Technology, 4. Ibaraki University

Abstract: Principle and system design of a DIAL system for tropospheric nitrogen dioxide measurement are examined and carried out. The existing three-wavelength UV ozone DIAL will be improved for this purpose. The wavelengths of 395.6 nm and 396.8 nm will be employed. Systematic error of nitrogen dioxide observation is estimated to be $4 \times 10^{20} \text{m}^{-2}$ in spectrum factor, which is somewhat larger than that for ozone $(3 \times 10^{20} \text{m}^{-2})$. As a result of the simulation, the aerosol backscattering interference is a major source of the systematic error, which is small enough for our purpose.

1. はじめに

二酸化窒素(以下、NO₂)は、代表的な大気汚 染物質の1つである。大気中の窒素の酸化で生じ る。自動車の排気ガスなど燃焼に伴って発生する 人為起源のものや、雷放電によって発生する自然 起源のものがあるが、人工衛星観測により、その 地理的分布と人為的発生源の重要性が明らかにな ってきている。太陽紫外線による光化学反応で、 NO₂1分子からオゾン1分子が生成される。この ように、両分子は相補的な関係があるため、オゾ ンと同時にNO₂の観測を、1台の観測装置で行う ことは効果的である。NO₂の高度分布観測には、 MAX-DOAS 法などいくつかの方法が存在するが、 観測精度、分解能、コストなどのいずれかの面で 課題があるため、オゾンとNO₂の高度分布の決定 的な観測手法はまだ存在しないのが現状である。

本研究では、ライダーによる NO₂の観測手法に ついて調べた。ライダーを用いた従来の NO₂観測 では、主に2台の色素レーザーを用いた装置が開 発されてきた。最近、Nd:YAG レーザー第3高調 波(355nm)をポンプ光源とする誘導ラマン散乱 によって、NO₂の高度分布が測定された (Hu et al., 2003)。

我々のグループでは、長期の安定した観測を可 能とする目的で、固体レーザー1台のみを用いた 差分吸収ライダーを開発し、オゾン、二酸化硫黄 (以下、一部に SO₂の語も使用)の鉛直分布の観 測が可能であることを示してきた。本研究の目的 は、既存のオゾンライダーの小規模の改造によって、オゾン及び SO2の観測機能を維持したままで、 NO2の観測が可能であるかどうかを明らかにする ことである。

2. NO₂の観測原理

波長 390nm 付近にある NO₂ の吸収線のピーク と谷の波長を、誘導ラマン散乱を用いて生成し、 オゾンの測定の場合と同じように、差分吸収法で NO₂を測定する。

Fig.1 に NO₂ の吸収断面積の波長依存性を示し ている。この図中には、Nd:YAG レーザーの高調 波を用いた誘導ラマン散乱で生成可能な波長を▼ 印で示している。第3高調波を重水素でラマンシ フトして得られる波長 396.8nm の吸収断面積が 5.2x10⁻²³cm² であり、off 波長に適している。その 両側(395.6nm(同メタン)と398.0nm(同水素)) に 6x10⁻²³ cm²以上の大きさの吸収ピークがあるた め、いずれかの波長を on 波長として使用できる (中里ほか, 2008)。

測定精度の見積もりには、スペクトル因子が使われている。Fig.2 は、NO₂観測におけるスペクトル因子の計算結果である。スペクトル因子 B_{λ} は、 差分吸収法において、後方散乱及び消散による補 正項の係数として現れ、次の式で定義される。

$$B_{\lambda} = \frac{1}{\lambda_{off} \left[\frac{\Delta \sigma}{\Delta \lambda} \right]}$$
(1)

ここで λ_{off} は off 波長、 $\Delta \sigma$ 及び $\Delta \lambda$ はそれぞれ on-off 波長間の吸収断面積差、及び波長差を表す。 Fig.2 から、395.6/396.8nm と 396.8/398.0nm の波長 組を使用した時に観測精度が高くなる。後者の場 合、THG と FHG を使用することになるため、レ ーザー装置の構造上、1台のレーザー装置で2波 長を生成するのが難しくなる。いずれの波長組の 場合でも、ラマンセルを2本使用する必要がある。 以下では、波長組 395.6/396.8nm の使用を想定し た装置構成とその可能性を検討する。

3. 装置構成とシミュレーション

気象研究所の対流圏オゾン/二酸化硫黄観測用 差分吸収ライダーを改造することによりNO2の観 測が可能となるようにする。この装置では、 Nd:YAG レーザー第4高調波(波長:266nm)を 二酸化炭素による誘導ラマン散乱で波長変換し、 第1 Stokes 線から第3 Stokes 線までの3波長 (276nm、287nm、299nm)を得ている (Nakazato et al., 2007)。この装置の送信部レーザー筐体内に THG 結晶(波長: 355nm)を取り付ける。また、 既存のラマンセルに並列して、新たに別のラマン セルを2本設置し、メタンと重水素を充てんする。 これにより、395.6/396.8nmの波長組を生成できる ようにする。これに加えて、受信系の干渉フィル ターをこれらの波長の受信に適したものに置き換 える。装置構成を Fig.3 に示す。この装置構成で は、3本のラマンセルが並列に設置されるが、CO2 を充てんしたラマンセルへ導入するためのミラー は全反射ミラーであり、NO2の測定時にはこの全 反射ミラーは取り外される。従って、オゾン/二酸 化硫黄の測定と、NO2の測定を同時に行うことは できない。オゾン/二酸化硫黄観測とNO2観測の変 更に必要な作業は、

1) THG 結晶と FHG 結晶の入れ替え、

2) ラマンセルへ誘導するためのミラーの調整、

3)干渉フィルターの交換、

であり、所要時間は最短で 10 分~20 分程度と考 えられる。

Fig.4 と Fig.5 に観測シミュレーションの結果を 示す。NO₂の濃度は $1-5x10^{17}m^{-3}$ を仮定している。 この場合、10mJ/pulse のエネルギーがあれば、1000ショットの積算で、高度 20km 程度までの観測が 可能であると考えられる(この場合、装置定数 C= $2.5x10^{15}m^{3}$)。誤差要因としては、大気分子によ る消散、エーロゾル後方散乱及び消散、他の気体 による吸収の寄与がある。エーロゾル後方散乱の 寄与がやや大きいことが予想される。オゾンと SO₂による影響はほとんどない。

4. まとめ

本研究から、既存のオゾン/二酸化硫黄観測用 DIALを用いて、オゾンとNO2の同時観測は難し いが、固体レーザー1台を用いたNO2の観測は可 能であることが分かった。今後、装置の改良を行 い、MAX-DOAS 法との同時観測により、測定値 の検証を行う予定である。

Fig.1 (left) Absorption cross section of nitrogen dioxide.

Fig.2 (right) Spectrum factor for NO2 measurement.

Fig.3 An improvement plan of MRI UV DIAL to NO2 measurement.

a function of system constant C for the wavelength of 396.8 nm. Fig.5 (right) Result of a simulation of NO₂ DIAL measurement.

Hu, S., H. Hu, Y. Zhang, J. Zhou, G. Yue, K. Tan, Y. Ji, and B. Xu, 2003: Chinese Opt. Lett. 1, 435-437.Nakazato, M., T. Nagai, T. Sakai, and Y. Hirose, 2007: Appl. Opt. 46, 2269-2279.

中里、永井、酒井、真野、2008: 第34回リモートセンシングシンポジウム講演論文集,23-26.