# 高精度偏光ライダーによる雲偏光計測と評価 Cloud Measurement by high-precision polarization lidar

椎名達雄<sup>1</sup>、野口和夫<sup>2</sup>、福地哲生<sup>3</sup> Tatsuo Shiina<sup>1</sup>, Kazuo Noguchi<sup>2</sup>, and Tetsuo Fukuchi<sup>3</sup>

<sup>1</sup>千葉大学大学院融合科学研究科, <sup>2</sup>千葉工業大学工学部, <sup>3</sup>電力中央研究所 <sup>1</sup>Chiba University, <sup>2</sup>Chiba Institute of Technology, <sup>3</sup>Central Research Institute of Electric Power Industry

#### Abstract

High-precision polarization lidar has been developed to detect the Faraday effect, which the lightning discharge rotates the polarization plane of the propagating laser beam. In this report, the cloud measurement was conducted by the developed lidar system to evaluate the detection accuracy of the depolarization. A lightning cloud was also observed and the rotation angle of the polarization plane of the propagating beam was estimated. The result was well coincided with the simulation and high-voltage discharge experiment.

## 1.はじめに

本研究では落雷予測をライダーで行うべく、数値解析、地上放電実験を行い、可視光と放電現象との相互作用に関して研究を進めてきた[1]-[2]。その結果を踏まえて、高精度偏光計測用インライン型ラ イダーの開発を行った。送信光として ps 両偏光成分をバランスをとって射出し、そのエコーを偏光無 依存型光サーキュレータにて同一光路上で検出する。この光サーキュレータを導入したインライン型 光学系によって近距離を狭い受光視野で観測することが可能となる。受光視野角を狭くすることで多 重散乱を除去した高精度の偏光計測が可能となる。ライダー光学系にはグランレーザープリズム等高 い偏光消光比をもつ偏光光学素子を用い、結果として 30dB 以上の高い偏光消光比を実現している。

本報告では開発したライダーを用いて雲計測を行った結果について述べる。偏光成分の検出精度の検証、ならびに雷雲計測の例を報告する。

### 2. 高精度偏光計測用インライン型ライダーの構成と計測原理

高精度偏光計測用インライン型ライダーの構成と使用を Fig.1 および Table 1 に示す。本ライダーは 送受信に共通の光学系を利用したインライン型を採用している。これにより送受信視野が常に重なり、 20km におよぶ計測範囲における送受信視野の光軸調整を不要としている。また、送信ビームはカセグ レン鏡筒を高効率に透過させるためにアキシコンプリズム対によって 250mm $\phi$ の環状光としている。受 光視野角は 0.177mrad.に狭めているが、送信ビーム径を大きくすることで送信光の解説による広がりを 低減している。送信光は ps 両偏光成分をバランスをとって出射し、エコー光は偏光無依存型光サーキ ュレータにて同一光路上で ps 成分毎に検出される。観測角は方向に制限があるものの、仰角ならびに 方位ともに可動/変更できる。検出されたエコー信号は式(1)によって偏光解消度 *depl*.が、式(2) によって偏光回転角 δ が計測される。両式中で  $\sqrt{I_p}$  ならびに  $\sqrt{I_s}$  は計測されるエコー強度から求めら れる振幅を表す。偏光解消度と偏光面回転角は同じ偏光面の崩れとして生じるが、雷放電によって生



Fig.1 High-precision ipoliarization lidar.

じるファラデー効果は特定の時間応答なら びに波形をもつ。本研究ではそれらを識別 因子とした解析を行う。

$$Depol. = \frac{\sqrt{I_p} + \sqrt{I_s}}{\sqrt{I_p} - \sqrt{I_s}}$$
(1)

$$\delta = \frac{\pi}{4} - \tan^{-1}(\sqrt{I_s} / \sqrt{I_p})$$

$$= \tan^{-1}(\frac{\sqrt{I_p} - \sqrt{I_s}}{\sqrt{I_p} + \sqrt{I_s}})$$
(2)

#### 3. 雲計測と偏光検出精度の評価

本報告では雲計測で得た ps 両偏光成分のエコー波形から式(1)よる偏光解消度を求め、その検出 精度を検証した。Fig.2 に夏場の水雲の計測例を示す。観測角が水平から 30 度程の仰角であったため雲 底高度は 1.1~1.3km の高さであった。視野角が狭いため、雲底の浅い箇所では 0.027 と低い偏光解消 度を示した。ps 両偏光成分エコーが殆ど揃って伝搬している様子が伺える。一方で 300m 以上伝搬し た雲内部でのエコーでは 0.368 と高い偏光解消度が検出された。これは雲深部での多重散乱の影響を意 味する。特に一方の偏光成分のみが強いエコーを返していることから水雲内の気流や濃度変化等が反 映されたものと推察できる。

Fig.4 は雷鳴時(雲間放電時)の雲観測の例である。グラフは距離補正の上、対数で表示している。4-6km の範囲で ps 偏光成分に変化が現れている様子がわかる。この前後での計測では必ずしも ps 偏光成分に

違いが出てはいないことから、Fig.3 の結果は雷 雲内部での偏光成分の変化を表している。Fig.2 の雲中での伝搬光の減衰とは違い、1km に渡っ て変化が出ている様子がわかる。往復での光の 伝搬時間は 6-7µs 程になる。これは放電時の電 磁パルス波形としても十分考えられる値である [3]。式(2)に従って偏光面回転角を求めた結 果を Fig.4 に示す。グラフ中で太線は広い範囲 で移動平均を取りノイズを低減させた結果であ る。偏光面回転角の大きさは約 3deg.と見積もら れた。これらの結果はシミュレーションや高圧 放電実験での結果(1deg.)と比べて若干大きい 値ではあるものの、同じオーダーの結果となっ た。S/N や計測の再現性を含めてさらに測定を 重ねていく。



Fig. 3 Lightning cloud measurement.







Fig.4 Estimation of rotation angle of polarization plane.

#### 4. まとめ

高精度偏光計測用ライダーによる雲偏光観測とその評価を行った。偏光解消度の測定では雲底付近 では水雲ゆえの低い偏光解消度を計測した。また、雲深部では多重散乱の影響も評価できた。また、 雷雲の観測ではファラデー効果による偏光面回転角の測定を試みた。暫定的な結果ながら、先行研究 による結果と合致する回転角の測定を行えた。今後、測定事例を増やすとともに、計測の再現性、安 定性を含めて評価を行っていく。

#### 参考文献

(1)Mikhail Grishin Eds., Advances in Solid-State Lasers: Development and Applications, Chapter 8, INTECH 2010
(2)Tetsuo Fukuchi, and Tatsuo Shiina, "Measurement of rotation of polarization plane of laser radiation propagating though impulse discharge in air", IEEJ Transactions on Electrical and Electric Engineering, Vol.5, No.1, pp.82-86, 2010
(3)M. A. Uman, J. Geophys. Res., Vol.90, No.D4, pp.6121-6130, 1985