CO₂ DIAL 用 1.6µm OPG/OPA レーザの開発 Development of the 1.6µm OPG/OPA laser for CO₂ DIAL 柴田泰邦、長澤親生、阿保 真 Yasukuni Shibata, Chikao Nagasawa and Makoto Abo 首都大学東京システムデザイン研究科

Graduate School of System Design, Tokyo Metropolitan University

Abstract

We developed the OPG laser system for $1.6\mu m$ CO₂ DIAL. In order to improve the measurement accuracy of CO₂ DIAL, development of the wavelength stabilized laser system has been conducted. The OPG and OPA transmitter system is reported in detail. The wavelength feedback system with the side locking of the iodine absorption spectrum is performed and the frequency stability of the Nd:YAG seed laser is realized with better than 0.15 pm precision for 8 hours.

<u>1. はじめに</u>

大気中の CO₂濃度の空間分布を測定するため、 1.6µm 帯の波長を利用した差分吸収ライダー (DIAL)の送信レーザとして、Nd:YAG レーザ励起 OPO (Optical Parametric Oscillator)レーザを光源 とするCO₂ DIALを開発してきたが¹、現在、さらに 高出力化をめざした次世代送信システムとして、よ り波長安定化が望める共振器不要の光パラメトリッ ク発振器 (OPG: Optical Parametric Generator)を マスターレーザーとした光パラメトリック増幅器 (OPA: Optical Parametric Amplifier)システムの開 発を行っている²。

CO₂ 吸収線のスペクトル形状は、気温・気圧 によって変動するため、CO₂ 濃度の測定の際、 吸収線の中心波長と裾(吸収の少ない波長)に 加え、気温によって吸収強度が不変となる波長

(気圧不動点)を用いて気温、気圧を同時に観 測することにより密度の測定精度を高める。 DIAL 観測におけるシステム誤差の一つとして、 CO₂吸収線の中心波長や気圧不動点へのレーザ 周波数同調精度があげられる。レーザ周波数の 揺らぎに起因する密度誤差を 0.1%にする場合、 ±45MHz での同調精度が必要であるが、吸収線 傾き部分である気圧不動点へのレーザ周波数 同調はより高い精度が要求される。そこで、波 長 532nm 近傍のヨウ素吸収スペクトルを利用 した波長安定化 Nd:YAG レーザを新たに開発し、 CO2 DIAL の測定精度向上を目指す。本講演で は、現在開発中の OPG/OPA レーザおよびヨウ 素安定化機構について報告する。

<u>2. OPG/OPAレーザ</u>

光パラメトリック発振は、自発分極を持つ光学結 晶に波長 λ_p の励起光が入射した場合に、 λ_p より長 波長を発生させる技術であり、シグナル光(波長 λ_s)とアイドラ光(波長 λ_i)は式(1)の関係を満たす。 λ_p にNd:YAGレーザの基本波長 1064nmを用い、 λ_s を 1572nm とする場合、波長 λ_i は、3292nm とな る。

$$\frac{1}{\lambda_p} = \frac{1}{\lambda_s} + \frac{1}{\lambda_i} \tag{1}$$

従来開発を行ってきた OPO レーザは PPNgLT 擬似位相整合(QPM: Quasi Phase Matching)素子 を用いてリング共振器を構成し、共振器長制御に より DIAL 観測に必要な波長を選択的に発生させ

Fig. 1 Setup of LD pumped Nd:YAG Q-switch Laser-Pumped PPMgLT OPG (master laser)

ていた。CO2の密度に加えて気温や気圧も同時に 測定するには共振器制御機構が複雑になってしま う。そこで、共振器を組まない OPG を採用すること で、システムを容易にすることが出来る。 QPM 素子 で波長変換された 1572nm は 1~2nm 程度の帯域 を持っているが、DIAL 観測に用いる波長のシード 光源をQPM 素子にインジェクションすることで狭帯 域化されたスペクトル発振が可能となる。また、 OPG の後段に OPA (Optical Parametric Amplifier) を設置することにより高出力化を図る。Fig.1 に LD 励起 Q-swNd:YAG レーザ励起 OPG レーザのブロ ック図を示す。Nd:YAG レーザはインジェクションに より狭帯域化され、最大出力 100mJ@500Hz, TEM00 モードである。OPG レーザは、CO2 セルを 使って吸収線に波長同調した 1.57µmDFB レーザ を注入することにより狭帯域化させている。Fig.2 に OPGの入出力特性を示す。スロープ効率は17.0% であった。Fig.3 に OPG/OPA レーザシステムのブロ ック図を示す。OPG で波長変換されなかった Nd:YAG レーザのビーム品質は良くないので OPA の励起光には用いず、Nd:YAG レーザのパルス光 を 2 つに分けて OPA を励起している。Fig.4 に OPG/OPA レーザの入出力特性を示す。OPG 出力 は 1.9mJ で、OPA における増幅作用の閾値は 15mJ@1064nm であった。また、スロープ効率は 35.8%であり、OPG 単体より増幅効果が高いことが 示された。Fig.5 に従来のOPOとOPG/OPA 出力の 横モードを示す。OPOは横モードが TEM00から崩 れていたが、OPG/OPA は TEM00 モードになって いる。

<u>3. ヨウ素安定化Nd:YAG励起OPG</u>

光パラメトリック発振において、式(1)より、励起光 1064nmの波長が安定していないと、CO₂-DIAL に 用いる波長 1572nmも安定しない。従来から使用し ていたパルス Nd:YAG レーザ用シーダーの DFB ファイバーレーザ(1064.467 nm)は、8 時間で 0.5 pm (130 MHz)の波長シフトがあり、一晩のライダー 観測に用いるには波長安定度が不十分であった。 Nd:YAG レーザ 1064 nm の第 2 高調波 532 nm 付 近には、ヨウ素分子の強い遷移があり、大きい吸収

Fig.2 Input / output characteristics of the OPG lasers

Fig. 3 Schematic diagram of the 1.6 μm OPG/OPA transmitters for CO2-DIAL.

Fig.4 Input / output characteristics of the OPA laser

Fig. 5 Beam profiles of OPO and OPG.

信号が得られることから Nd:YAG レーザの波長安 定化に良く用いられる。そこで、1.6µmOPG 励起用 の532nmヨウ素安定化Nd:YAGレーザを新たに開 発し、OPGレーザの波長安定化を図った。

Fig.6 に今回開発したヨウ素安定化 Nd:YAG レ ーザの構成図を示し、Fig.7 に波長安定化に利用 したヨウ素吸収スペクトル(R86,中心波長 532.128nm, 25℃)を示す。シードレーザであるリン グ共振器型 cw Nd:YAG レーザ (InnoLight Mephisto, 350mW@1064nm)の一部を PPLN 結晶 に入射し、発生した 532nm をヨウ素セルに通して 光検出器(フォトダイオード)で受光する。この受光 信号強度が常に Fig.7 の波長Aset 相当の電圧にな るよう、cw Nd:YAGレーザの結晶温度を0.005℃単 位(11.3pm/°C)で制御した。Fig.8にFree Runとヨウ 素安定化での Nd:YAG シードレーザの波長安定 度を示す。Free Run では時間と共に波長がずれて しまうが、ヨウ素安定化したシードレーザは波長計 (Highfinesse WS7-IR)の絶対精度 0.15pm (40 MHz)以下の安定度を示した。Fig.9 に Free Run と ヨウ素安定化でのパルス Nd: YAG レーザの波長安 定度を示す。Fig.8 同様にヨウ素安定化した場合、 波長計(Highfinesse WS7-IR)の絶対精度以下の 安定度を示した。Fig.9 中に見られる周期約 11 秒 の揺らぎは、パルス Nd:YAG レーザの共振器制御 の周期に一致しており、シーダーが原因の揺らぎ ではない。Fig.10 にヨウ素安定化での Nd:YAG シ ードレーザの長時間波長安定度を示す。8時間に わたり、波長計の絶対精度以下の安定度を実現し た。

Fig. 6 Diagram of the seed injection and wavelength-locking system for the Nd:YAG laser.

Fig. 7 Absorption spectrum of iodine molecular. (R86, 532.128nm)

Fig. 8 Stabilities of seed laser wavelength as a function of time.

Fig. 9 Stabilities of pulsed Nd:YAG laser wavelength as a function of time.

Fig. 10 Stabilities of seed laser wavelength as a function of time for 8 hours.

<u>3. まとめ</u>

DIAL による CO₂ 鉛直分布を行う次世代送信シ ステムとして、より波長安定化が望める共振器不要 の OPG/OPA レーザシステムの開発を行ない、 500Hz, 12mJ で TEM00 モードの出力を得た。また、 OPG レーザの励起光源である Nd:YAG レーザの 波長安定化を行った。従来シード光源である DFB ファイバーレーザの波長安定度は 8 時間で 0.5pm と DIAL 観測には不十分であったが、ヨウ素安定 化 Nd:YAG シードレーザを用いることで、8 時間以 上にわたり波長計の計測精度 0.15pm を下回る安 定度を実現した。今後、ヨウ素安定化 Nd:YAG レ ーザを用いた OPG レーザの波長安定度を評価す る。

<謝辞>

本研究は科学技術振興機構「先端計測分析技術・機器開発事業」により行われている。

参考文献

- 1. D. Sakaizawa, C. Nagasawa, T. Nagai, M. Abo, Y. Shibata, M. Nakazato, T. Sakai, "Development of a 1.6μ m differential absorption lidar with a quasi phase matching OPO and photon-counting detector for the vertical CO₂ profile", Applied Optics, 48(4), 748, 2009.
- Y. Shibata, C. Nagasawa and M. Abo, "QPM-OPG based high power 1.6 μm laser transmitter for CO2-DIAL", Proc. of ILRC25, 243-246, 2010.