CO₂測定用 1.6 µm DIAL 受信部の開発

Development of the Receiving System for 1.6µm CO₂ DIAL

永井 智広¹, 酒井 哲¹, 中里 真久¹, 阿保 真², 長澤 親生² Tomohiro NAGAI¹, Tetsu SAKAI¹, Masahisa NAKAZATO¹, Makoto ABO², Chikao NAGASAWA²

> ¹気象研究所 気象衛星・観測システム研究部 ²首都大学東京 システムデザイン学部

¹Meteorological Research Institute, ²Tokyo Metropolitan University

Abstract

The receiving system of the CO_2 DIAL system using the 1.6µm carbon dioxide (CO_2) absorption band is designed and the test system is being developed. The newly developed Near InfraRed Discrete Amplification PhotoDetector (NIRDAPD) is selected for the replacement of the both linear mode and Geiger mode InGaAs APD. The expected photon detection efficiency is 8 to 20%. However, the effective area of the NIRDAPD is as narrow as the InGaAs APD so that this type of the detector is not suitable for the large aperture telescope. To match up the large aperture telescope, newly developed narrow band interference filter and NIR PMT are selected. The new system will be tested as the one of detectors of the lidar system which measure the CO_2 , temperature and pressure profiles simulitanously.

1. はじめに

1.6µm 帯の二酸化炭素の吸収線を用いた CO₂ DIAL の開発を行っている。この波長帯は、同様 な開発が行われている 2.1µm と比べ、水蒸気な ど他の微量気体成分の影響が少ない波長帯であ るが、高出力のパルスレーザーの新規開発が必 要なことから開発が遅れていた。我々のグルー プでは、パルスレーザーの新規開発(境澤 他 2007、Sakaizawa etc. 2008 等)を行うと共に、 DIAL システムとしての開発(Nagasawa etc. 2008、 長澤 他 2009 等)のなかで、直接検波が可能な 波長帯であることを生かした高感度受信部の開 発を行ってきている。ここでは、この開発状況 について報告する。

2. 受信部の設計

ライダーの受信部全体の設計については、当 初、口径比(F)が非常に小さい受信鏡を用い、 固体検出素子(InGaAs APD)を受光素子とした システムを考案した(永井他2007、2008)。し かしながら、リニアモードで動作するアナログ 検出用の素子は雑音が多く、ガイガーモードで の動作を行う光電子計数法用の素子も動作可能 なデューティーが非常に小さく実効的な効率が 上げられないため、いずれも所要の感度が得ら れない事が判明した。このため、効率を上げら れる受光素子を継続して調査すると同時に、大 口径の受信鏡と近赤外まで感度を持った光電子 増倍管を用いたシステムを並行して検討した。

高感度の検出器については、リニアモードの 動作でありながらゲインが非常に高く、光電子 計数法での使用が可能な新しい検出素子

(NIRDAPD) が入手可能となり、これを用いた 受信実験を計画している。NIRDAPD の特性を Table 1 に示す。

固体検出素子は、InGaAs APD にせよ NIRDAPDにせよ、受光面が最大でも直径200μm と非常に小さいため、大口径の受信鏡と組み合 わせて使用することが困難である。このため、 十分な感度の受信部とするためには、検出器自 体の感度を向上させるか、複数の受信鏡を用い たシステムとする必要があった。しかしながら、 より受光面の大きな光電子増倍管(PMT)でも 近赤外に感度を持つ製品が開発されて来ている ため、これを大口径受信鏡と組み合わせたシス テムも合わせて検討した。

近赤外に感度を持つ PMT の諸元を Table 2 に 示す。この検出器と口径 50cm 程度の受信望遠 鏡を組み合わせたシステムを検討しているが、 このシステムでは昼間の観測を行うために、狭 帯域フィルターが必要となる。1.6µm 帯の干渉 フィルターは、数年前の先行研究開始時に調査 をした際には、透過率は95%を超える製品が製 作可能であったが、透過波長幅は10nm以上と 広いものしか製作が不可能であった。今回の調 査の結果、透過率が65~70%程度で、透過波長 幅は0.1~0.5nmの製品の製作が可能となってい た。このため、CO2 濃度、気温、気圧の同時測 定(長澤他、2009)に必要な波長幅を持った透 過波長幅0.5nmの製品を使用することとした。 干渉フィルターの透過特性と、CO2 濃度、気温、 気圧の同時測定に使用する波長の関係をFig.1 に示す。

3. おわりに

ここで調査した検出素子(NIRDAPD、PMT) は、これまでに開発した大口径受信鏡や市販の 反射望遠鏡、あるいは、新たに製作を計画して いる口径 50cm 程度の受信望遠鏡と組み合わせ て受信系を構成し、CO₂ 濃度、気温、気圧を同 時測定するためのライダーの受信部として使用 する事を予定している。観測結果については、 地上(鉄塔)観測や商用航空機を利用した観測 等と比較し、観測精度などを検証することを予 定している。

<謝辞> 本研究開発は、科学技術振興機構「先端計測分析技術・機器開発事業」及び文部科学 省「科学研究費補助金(基盤B)」により実施されている。

<u>参考文献</u>

境澤 大亮、長澤 親生、阿保 真、柴田 泰邦、 永井 智広、中里 真久、酒井 哲 (2007)、第 25 回レーザセンシングシンポジウム予稿集、pp 8-11。

永井 智広、長澤 親生、中里 真久、酒井 哲、 阿保 真、柴田 泰邦、境澤 大亮 (2007)、第 25 回レーザセンシングシンポジウム予稿集、pp 161-164。

Chikao Nagasawa, Daisuke Sakaizawa, Makoto Abo, Yasukuni Shibata, Tomohiro Nagai, Masahisa Nakazato, Tetsu Sakai (2008), Proceedings of ILRC 24, pp 640-642.

Daisuke Sakaizawa, Chikao Nagasawa, Tomohiro Nagai, Makoto Abo, Yasukuni Shibata (2008), Proceedings of ILRC 24, pp 683-684.

永井 智広、長澤 親生、中里 真久、酒井 哲、
阿保 真、柴田 泰邦、境澤 大亮 (2008)、第 26
回レーザセンシングシンポジウム予稿集、pp
42-43。

長澤 親生、阿保 真、柴田 泰邦、永井 智広、

中里 真久、酒井 哲、塚本 誠、誉田 高行 (2009)、第 27 回レーザセンシングシンポジウ ム予稿集、講演番号 H-2。

 Table 1
 Specifications of the NIRDAPD detector.

1	
Chip Size	$700 \times 700 \ \mu m^2$
Active Area	φ200 μm
Photon Detection Efficiency	8-20 % @ 1550nm
Response Range	900-1800 nm
Pulse Width (FWHM)	0.7 ns
Typical Gain (M)	typ 2×10^5
Excess Noise Factor	<1.05
Time Resolution	typ 300-500 ps
Dark Count Rate	typ 10-60 Mcps
Operating Bias	50-60 V

Table 2Specifications of the NIR PMT.

Part Number	H10330-75
Туре	Head on PMT
Effective Area	φ1.6 mm
Cathode Type	InP/InGaAs
Response Range	950-1700nm
Gain	1×10^{6}
Dark Current	40nA typ.
Rise Time	0.9ns
Transit Time Spread	0.3ns
Dark Count Rate	2.0×10^5 cps
Cathode Sensitivity	typ. 2 %
Quantum Efficiency	(available up to 10%)
Radiant	typ. 24 mA/W @1500nm

Fig. 1 Characteristics of the transmittance of the interference filter and the wavelengths using for the simultaneous measurement of the CO₂, temperature and pressure profiles.