1.6μm CO₂ 吸収線への高安定波長同調システムの開発 Development of laser wavelength tuning system for 1.6μm CO₂ absorption line 柴田泰邦、長澤親生、阿保 真 Yasukuni Shibata, Chikao Nagasawa and Makoto Abo 首都大学東京システムデザイン研究科 Graduate School of System Design, Tokyo Metropolitan University

Abstract

We developed the OPO laser system with ± 24 MHz stabilization of a seed laser for 1.6µm CO₂ DIAL in 2007. The development of the frequency stabilization laser system for the next generation 1.6µm CO₂ DIAL has been conducted. The wavelength stabilization feedback system using the transmission rate of the absorption cell is proposed and frequency stability of the seed laser obtained ± 9 MHz at absorption peak wavelength. This stabilization system of the laser frequency is reported.

<u>1. はじめに</u>

我々は、大気中の CO₂濃度の空間分布を測定するための 1.6µm 帯 CO₂吸収線を利用した差分吸 収ライダー(DIAL)を開発している。CO₂吸収線のスペクトル形状は、気温・気圧によって変動す るが、気温によって吸収強度が不変となる波長(気圧不動点)が存在する。CO₂濃度の測定の際、 吸収線の中心波長と裾(吸収の少ない波長)に加え、この気圧不動点の波長を追加し、他の波長と 強度を比較することで気温の測定が可能である。さらに、密度測定とは異なる吸収線を追加するこ とで気圧の測定が可能となり、ライダー観測で得られる密度、気温、気圧のデータを用いて反復計 算させることにより、密度の測定精度を高める。一方、システム誤差の一つとして、CO₂吸収線の 中心波長や気圧不動点へのレーザー周波数同調精度があげられる。レーザー周波数の揺らぎに起因 する密度誤差を 0.1%にする場合、±45MHz での同調精度が必要であるが、吸収線傾き部分である 気圧不動点へのレーザー周波数同調はより高い精度が要求される。本講演では、現在開発中のレー

2. 波長同調システム

DIALの光源には LD 励起 Nd:YAG 励起 OPO を用い、インジェクションによりスペクトルの狭帯 域化を図り、レーザー波長を制御する。よって、シード光源波長の同調精度が測定精度向上の鍵と なる。吸収セルを用いた一般的な波長同調の方法として、吸収波形の1次微分を用いる方法がある。 吸収波形を波長に関して1次微分すると、吸収ピーク波長でゼロ値をとり、その前後で正負反転す る特徴を持つことを利用し、1次微分値が常にゼロになるよう帰還制御する。ゼロ値からの差は、 吸収ピークからの周波数差に相当するため誤差信号と呼ぶ。1.6µm 帯 CO2吸収線は吸収量が少ない ため誤差信号が小さく、安定的な帰還制御が行えない。そこで、先行研究では波長同調システムに CO2セルを挿入したファブリーペロー(FP)共振器を用いた。この FP 共振器の透過光はフリース ペクトルレンジ(FSR)周波数間隔で共振し、透過光強度がピークをとる。吸収セルを FP 共振器 内に挿入すると吸収線帯域内に FSR 間隔で複数のスペクトルがたつ。この透過光強度を1次微分し た誤差信号は Fig.1 に示すように吸収セル単体の場合と比較して周波数分解能が飛躍的に向上する が、吸収ピーク波長に FP 共振器の透過光ピークを合わせるために、PZT 素子を用いて FP 共振器長 を制御した。我々は、この制御方式により 30 分間で±24MHz の安定度を得た¹。

さらなる測定精度の向上のため、CO₂セル透過光と参照光の強度比を一定に保つ帰還制御方式を 採用した。Fig.1 に制御系のブロック図を示す。シード光源の DFB-LD 出力の 10%が CO₂セルを通 るセル透過光 P_tと参照光 P_rに分けられ、レーザー周波数安定化装置(TOPTICA LaseLock)に入力 される。比 P_t/P_rが Fig.2 に示すように吸収ピークに相当する電圧 Vp になるよう、PID 制御によっ て LD ドライバーの LD 電流に誤差信号が帰還される。この方式の利点は、比の値だけでロックす るレーザー周波数を決定でき、特に吸収線の傾き部分の誤差信号は吸収ピーク付近より大きく取れ る。Fig.3にDFB-LD周波数の55分間の揺らぎと1分間の揺らぎを示す。標準偏差は30分間で9.0MHz と先行研究の約1/3に軽減された。気圧不動点へのレーザー周波数同調精度については、高分解能 計測が可能なヘテロダイン検波を用いて安定度を評価する予定である。

Fig.1 Error signals with / without Fabry-Perot.

Fig.2 Block diagram of the wavelength stabilization system using the transmission rate of the absorption cell.

Fig.3 Fluctuation of the DFB-LD wavelength.

<u>3. まとめ</u>

DIAL による CO₂鉛直分布を高精度で行うため、レーザ周波数の高安定化を行った。先行研究で は吸収セルを内挿した FP 共振器を用いることで±24MHz の安定度(30 分間)を実現したが、吸収 セルの吸収ピークと FP 共振器の透過光ピークの同調が必要であった。本研究では、吸収セルの透 過光と参照光の強度比が常に一定になるような帰還制御を行う方式を採用し、30 分間の安定度を± 9MHz に向上させることに成功した。また、気圧不動点における周波数安定度はヘテロダイン検波 にて測定する予定である。

<謝辞>

本研究は科学技術振興機構「先端計測分析技術・機器開発事業」により行われている。

参考文献

1. D. Sakaizawa, C. Nagasawa, T. Nagai, M. Abo, Y. Shibata, M. Nakazato, T. Sakai, Development of a 1.6μm differential absorption lidar with a quasi phase matching OPO and photon-counting detector for the vertical CO₂ profile, Applied Optics, 48(4), 748, 2009.