PC-13

地上/衛星搭載ライダーと化学輸送モデルを用いた東アジア域における 球形エアロゾル分布の季節変動に関する研究

Seasonal variation of spherical aerosol distribution in East Asia based on ground and space Lidar observation and a Chemical transport model

原由香里¹, 鵜野伊津志², 清水厚¹, 杉本伸夫¹ Yukari Hara, Itsushi Uno, Atsushi Shimizu, Nobuo Sugimoto ¹国立環境研究所, ²九州大学応用力学研究所 ¹National Institute for Environmental Studies ²Research Institute for Applied Mechanics, Kyushu University

ABSTRUCT

Seasonal variation of spherical aerosol in East Asia was clarified using ground/space-based lidar measurements and the Community Multi-scale Air Quality Modeling System (CMAQ) chemical transport model over the period from July 2006 to December 2008. We found that CMAQ result explains the typical seasonal aerosol characteristics by lidar observations. For example, CMAQ and ground-based lidar showed a summertime peak of aerosol optical thickness (AOT) at Beijing, an autumn AOT peak at Guangzhou and summertime AOT trough at Hedo, Okinawa. These characteristics are mainly controlled by seasonal variations of Asian summer/winter monsoon system. CMAQ seasonal average aerosol extinction profiles were also examined by ground lidar and CALIOP extinction data. These comparisons clarified that the CMAQ tended to underestimate concentration level, but reproduced the observed aerosol thickness well in downwind region. Ground lidar and CALIOP seasonal profiles also showed good agreement with the aerosol layer depth under cloud free condition.

はじめに

東アジア域における急速な経済発展に伴う大気汚染は、人体や気候システムに対する影響という観点 から重要な環境問題であるという認識がますます高まっている.東アジア域における前駆体物質やエア ロゾルの特性・放射強制力を明らかにするため、比較的多くの野外観測が行われてきた(例えば、 ACE-Asia, TRACE-P, ADEC, EAREX 2005).しかし、これらの野外観測は主に春季に行われているた め、東アジア域におけるエアロゾル分布の季節変動は未だ十分に明らかにされていない.2001年以降、 国立環境研究所では2波長ミー散乱ライダーによる自動ライダーネットワークを構築しエアロゾル・雲 の連続観測を行ってきた.また、人工衛星 CALIPSO が 2006年4月に打ち上げられ、衛星搭載ライダ ーCALIOP により宇宙からの連続観測も行われている.そこで、本研究では NIES 地上ライダー、化学 物質輸送モデル CMAQ そして衛星ライダーに基づき、東アジア域におけるエアロゾル分布の季節変動 を3次元的に明らかにする.

化学物質輸送モデル・データの概要

本研究で使用した化学物質輸送モデルは Community Multi-scale Air Quality Modeling System (CMAQ) ver4.4 である. CMAQ は米国環境保護庁(EPA)によって開発され,地形,土地利用,発生源,

気象その他の入力条件を基に、様々な大気汚染物質濃度の分布や沈着量を計算するオイラー型大気質シ ミュレーションモデルである(Byun and Ching 1999; Byun and Schere, 2006). 気象モデルとして RAMS(Regional Atmospheric Modeling System)を利用した. RAMS の計算領域は東アジア域を含む東 西 6400km、南北 5600km($\Delta x = \Delta y = 80$ km)、鉛直方向は 14 層(上空 22km まで;第一層 150m)の範囲 で構成されている. RAMS の気象場計算の初期条件・境界条件には NCEP の全球客観解析データ(6 時間毎)を用いた. アジア域の窒素酸化物(NOx)や非メタン有機化合物(NMVOC)等の人為起源排出量 は REAS ver1.1 をもとに 2005 年のエネルギー消費量などをベースにした排出量データを使用した.

NIES 地上ライダーデータについては,後方 Fernald のインバージョン法(Fernald et al., 1984)によ り 532 nm におけるエアロゾル後方散乱係数と消散係数を導出し(ライダー比は 50 sr), 偏光解消度を用 いて球形・非球形成分を分離した(Shimizu et al., 2004). CALIOP データについては Level 1B Ver.2.01 の減衰補正なし後方散乱係数から前方 Fernald のインバージョン法(Fernald, 1984)によりエアロゾル の後方散乱係数を求めた.ライダー比は 50 sr を用いた. Level 2 Ver.2.01 の CAD データは雲マスキン グに使用した. 解析期間は 2006 年 7 月から 2008 年 12 月である.

結果と考察

はじめに、北京、広州、辺戸における地上ライダーと CMAQ による球形エアロゾルの消散係数の時 間高度断面の比較を行った.図1に沖縄県辺戸サイトにおける(a)NIES ライダーと(b)CMAQ による球 形エアロゾルの消散係数の時間高度断面を示す.辺戸の球形エアロゾル層の季節変動の特徴として、春 季(3~5 月)・秋季(9~11 月)・冬季(12~2 月)における間欠的な高濃度イベントの発現と夏季(6~8 月) における清浄な状態が挙げられ、地上ライダーと CMAQ の季節変動は概ね整合的である.図には示さ ないが中国の人為起源排出量をゼロとした CMAQ の感度解析結果から, 春季・秋季の高濃度イベント について中国起源の越境大気汚染の寄与が非常に大きいことが示された.北京と広州においては,消散 係数の季節的なピークがそれぞれ夏季と秋季に見られた. 続いて図 2 に辺戸における地上ライダー(実 線), CALIOP(点線), CMAQ(+)による球形エアロゾルの消散係数の季節平均の鉛直プロファイルを示 す. CMAQ の消散係数の平均値は観測値と比較して過小であるが, 辺戸におけるエアロゾル層厚さを よく再現している. エアロゾル層厚さは通年地表~2km であり季節変動が小さく, 消散係数の平均値は 春季に最大となることが明らかである.地上ライダーと CALIOP による平均プロファイルも濃度レベ ル,エアロゾル層厚さ共に良い一致が見られた.図3に(a)CALIOPと(b)CMAQによる高度0-2kmと 高度 2-4km 平均の球形エアロゾルの消散係数の水平分布を示す(CMAQ は terrain following 座標系). CMAQ は春季と秋季においては偏西風の卓越によって大陸からの球形エアロゾルの流れ出しが強いこ とや、夏季においては南からの清浄な気塊の流入により球形エアロゾルの高濃度領域が北へシフトする ことなどを明瞭に示しており,地上/衛星ライダーデータや CMAQ によって示された球形エアロゾルの 季節変動は、東アジア域のモンスーンシステムの変動と整合的であることがわかる. CALIOP による球 形エアロゾルの季節分布も CMAQ ほど明瞭でないが高濃度領域の季節的なシフトを示している.当日 は、北京や広州における詳細な解析結果を併せて示す.

参考文献

- Byun, D. W., and J. K. S. Ching, ed. (1999), Science algorithms of the EPA Models-3 community multi-scale air quality (CMAQ) modeling system, *NERI*, *Research Triangle Park*, NC.
- Byun, D. W., and Schere, K. L. (2006), Review of the governing equations, computational algorithms, and other components of the Model-3 Community Multiscale Air Quality (CMAQ) modeling system, *Applied Mechanics Reviews*, 59, 51-77.

Fernald, F. G.:Analysis of atmospheric LIDAR observations: Some comments, *Appl. Optics*, 23, 652-653, 1984.

Shimizu, A., Sugimoto, N., Matsui, I., Arao, K., Uno, I., Murayama, T., Kagawa, N., Aoki, K., Uchiyama, A., amd Yamazaki, A.: Continuous observations of Asian dust and other aerosols by polarization lidars in China and Japan during ACE-Asia, J. Geophys. Res., 109, D19S17, doi:10.1029/2002JD003253, 2004.

Figure 1 Time-to-height cross section of the spherical extinction coefficient by (a) NIES lidar and (b) CMAQ from July 2006 to December 2008 at Hedo.

Figure 2 Vertical profiles of spherical extinction coefficients for four seasons based on NIES lidar (solid line), CALIOP(dashed line) and CMAQ(cross) at Hedo.

Figure 3Seasonal distributions of spherical extinction coefficients for altitude ranges of 0.0-2.0 km and
2.0-4.0 km by (a) CALIOP and (b) CMAQ.