2007年6月に仙台空港で観測されたストリーク構造について

Doppler lidar observations of the streak structures over Sendai Airport in June 2007

小田僚子¹、岩井宏徳¹、村山泰啓¹、石井昌憲¹、水谷耕平¹、板部敏和¹、常松展充²、 山田泉³、又吉直樹⁴、松島大⁵、余偉明⁶、山崎剛⁶、岩崎俊樹⁶ Rvoko Oda¹ Hironori Iwai¹ Yasuhiro Murayama¹ Shoken Ishii¹ Kohei Mizutani¹

Ryoko Oda¹, Hironori Iwai¹, Yasuhiro Murayama¹, Shoken Ishii¹, Kohei Mizutani¹, Toshikazu Itabe¹, Nobumitsu Tsunematsu², Izumi Yamada³, Naoki Matayoshi⁴, Dai Matsushima⁵, Weiming Sha⁶, Takeshi Yamazaki⁶, Toshiki Iwasaki⁶

> ¹情報通信研究機構、²千葉大学、³電子航法研究所、⁴宇宙航空研究開発機構、 ⁵千葉工業大学、⁶東北大学

¹National Institute of Information and Communications Technology, ²Chiba University, ³Electronic Navigation Research Institute, ⁴Japan Aerospace Exploration Agency, ⁵Chiba Institute of Technology, ⁶Tohoku University

Abstract: The high-resolution Doppler lidar observations using the Electronic Navigation Research Institute (ENRI)'s lidar (range resolution of 30 m) was used to investigate the turbulent organized structure (TOS) over Sendai Airport on 19 June 2007. It is important to investigate the characteristics of TOS because the TOS within the near surface layer is considered to control the vertical exchange processes of momentum, heat and other scalars between the surface and atmosphere. The ENRI lidar was stationed on the rooftop of ENRI's Iwanuma branch building (16.7 m above the ground) at 2.5 km west from the Pacific coast. It performed full 360 degree CAPPI (Constant-Altitude Plan Position Indicator) scans at elevation angles from 0.5 to 5.0 degree in 0.5 degree increments in the day time. In this experiment, the atmospheric stability was slightly unstable, which was estimated from vertical profiles of wind velocity and air temperature measured by heliborne sensors of Japan Aerospace Exploration Agency (JAXA). To extract the turbulent motion from the datasets of CAPPI scans, the radial velocity fluctuations are calculated by subtracting mean-radial velocity, which is estimated from the VAD (Velocity Azimuth Display) method, from the radial velocity observed by CAPPI scans. The horizontal distribution of the radial velocity fluctuations revealed the occurrence of the streak structures elongated along the main stream. The spacings between the streaks were estimated about 340 m using a two-point covariance analysis.

1. <u>はじめに</u>

地表面近傍には、高速・低速縞からなる風下方向に 延びる乱流組織構造(ストリーク)が発達し、これら は運動量・熱・物質輸送に対して支配的な役割を担っ ていると考えられている。そのため今日まで、数値シ ミュレーションや風洞実験、屋外観測など、様々な方 法で大気乱流構造の検討が行われているが、実際の自 然条件下において数 km スケールの広範囲に及ぶ風の 場を捉え、乱流構造の実態を検証した例は少ない。

本研究では、2007 年 6 月 19 日に仙台空港において 実施された高分解能ドップラーライダー(30m レンジ 幅/電子航法研究所(ENRI)所有)観測結果から、内 部境界層内乱流構造の水平分布形状について検討する。

2. <u>観測概要</u>

海岸から約 2.5 km 西の仙台空港敷地内にある岩沼 分室の屋上(地上高約 16.7m)に設置された ENRI ラ イダーにより、日中、仰角0.5~5.0°の CAPPI (Constant-Altitude Plan Position Indicator) スキャ ン(仰角を一定にして方位角方向360。回転させる) を実施した。スキャンスピードは6°s⁻¹である。本観 測中には宇宙航空開発研究機構 (JAXA) ヘリコプタ ーによる風・気温などの鉛直観測が同時に行われてお り、その結果から、やや不安定な大気場であったこと が確認されている。

3. ストリーク幅の推定

Fig. 1に6月19日13時1分から2分に観測された 仰角1°(地上から22.0~48.6mの高度範囲)のCAPPI スキャンの結果を示す。主流風向は南東(北から約 136°)で、約6ms⁻¹の海風が仙台空港に向かって流 入している状況であるCAPPIスキャンより観測され た視線方向風速からVAD(Velocity Azimuth Display) 法により推定された平均視線方向風速を減ずることで、 平均風速場からの変動成分を抽出した(Fig.2)。その 結果、高速・低速領域が交互に並ぶ主流方向に沿った

Fig.1 Horizontal cross section of radial velocity derived from a PPI scan at 1° elevation taken from 13:01 to 13:02 JST on 19 June 2007. The positive radial velocity indicates flow away from the lidar and the negative radial velocity indicates flow toward the lidar. The dashed line shows the borders of Sendai Airport.

明確なストリーク構造が確認された。主流方向の構成 の長さは、測定領域の制限などから特定が難しいため、 今回は構造の幅に着目し、二点相関による検討を行く た。ENRI ライダーから約1km 下流側における、スパ ン方向の直線L(Fig.2 図中グレーライン)において、 二点相関係数を計算した。相関係数のピークが現れる 位置 (Fig.2 図中矢印) からストリークの幅を推定す ると、約340mの幅を持つことが数値的に求められた。 今後は、流下距離に伴う代表幅の変化および NICT ラ イダーとENRIライダーとのデュアルドップラー解析 によるより詳細な風系場から求められる組織構造との 比較、異なる地表面状態における観測例との比較を行 う予定である。

4. まとめ

高分解能ドップラーライダーにより求められた仙台 空港周辺における視線方向速度変動成分から、二点相 関解析により約340 m の幅を持つストリーク構造が 確認された。ドップラーライダーは実大気の風の場をMurayama, T. Itabe, I. Yamada, N. Matayoshi, D. 面的に捉えられるため、ストリーク構造の推定に有用 であると言え、未だ未解明であるストリーク構造の詳 細を検証するためには、今後も多くの観測事例が必要2008, doi:10.1029/2008GL034571. とされる。

Fig.2 The radial velocity fluctuations field retrieved from the ENRI lidar data corresponding to the same times in Fig.1. Black: positive value (high speed region); light gray: negative region (low speed region); dark gray: mostly zero. The gray line indicates the cross-stream component extracted for two-point correlation analysis.

Fig.3 Two-point covariance curve for radial velocity fluctuations as function of cross-stream displacement.

謝辞

本研究は科学研究費補助金基盤研究(A)(課題番号 19204046、代表者 岩崎俊樹)の助成により実施され た。記して謝意を表す。

* 参考文献: Iwai H., S. Ishii, N. Tsunematsu, K. Mizutani, Y. Matsushima, W. Sha, T. Yamazaki and T. Iwasaki, Dual-Doppler lidar observation of horizontal convective rolls and near-surface streaks, Geophys. Res. Lett, 35, L14808,