1.6µm 帯 CO₂ DIAL の気温測定による高精度化に関する研究 A study on high accuracy by measuring of carbon dioxide density and atmospheric temperature together using 1.6µm CO₂ DIAL

大城雄一、柴田泰邦、長澤親生 Yuichi Oshiro, Yasukuni Shibata and Chikao Nagasawa

> 首都大学東京 システムデザイン学部 Tokyo Metropolitan University

Abstract: A 1.6 μ m differential absorption lidar (DIAL) to measure vertical carbon dioxide (CO₂) profiles by the direct detection method have been developed. We propose a method which improves the accuracy of CO₂ density measurement by using the atmospheric temperature profile measured simultaneously with the CO₂ absorption line. The temperature measurement is conducted by using the wavelength which is insensitive to pressure but is sensitive to the temperature. Moreover, it is shown that accuracies for CO₂ density measurement can be improved significantly by applying the interactive method to this DIAL technique.

1. はじめに

近年、人類にとって地球温暖化問題が深刻な課題となっており、中でも CO₂ (二酸化炭素) は、 最も影響の大きい温室効果ガスである。産業革命 以前は約 280ppm であったが、現在では 379ppm に達しており、今後も増加していくと予想されて いる。しかし、その動態把握には未解明な部分が 多く、濃度の鉛直分布を高精度に測定することが 重要となっている。我々は、波長 1.57µm 帯 CO₂ 吸収線を利用した DIAL (差分吸収ライダー) に よって、精度 1.0%での CO₂ 濃度分布測定を達成 したが、さらに高精度での測定が必要である[1]。

CO₂DIAL の高精度化については正確な気温・気 圧の測定と、レーザ出力や波長安定性の向上、光 学系の最適化が考えられる。大気中の CO₂吸収ス ペクトル強度は濃度、気温、気圧の3変数で決定 する。DIAL による濃度測定では、気温と気圧を 仮定しているため、この仮定と真値との差が CO₂ 濃度誤差になる。

本研究では、濃度測定とは異なる ON 波長を利 用した CO₂DIAL を用いて正確な気温を測定し、 CO₂ 濃度の測定精度向上を目的とする。吸収スペ クトルの気温依存性が大きい吸収線において、気 圧依存性が小さい吸収線傾き部分の波長と OFF 波長を用いた DIAL から気温を推定することによ り気温補正を行い、吸収ピーク波長を利用する CO₂DIAL による濃度測定の高精度化を目指す。

2. 提案する気温測定原理

Fig.1 に波長 1.57 μ m 帯 CO₂吸収線を示す。DIAL 測定において、吸収の大きいを波長 λ_{on} 、吸収の小 さな波長を λ_{off} と表すと、高度 z における気体密 度 N(z)は(1)式で求めることができる。

$$N(z) = \frac{1}{2\Delta\sigma\Delta z} \ln\left(\frac{S_{off}(z + \Delta z)}{S_{off}(z)} \frac{S_{on}(z)}{S_{on}(z + \Delta z)}\right)$$
(1)

ここで、 $\Delta \sigma$ は λ_{on} と λ_{off} の差分吸収断面積、 Δz は距離分解能、S(z)は受信信号強度を示し、添え字のon, off はそれぞれ λ_{on} 、 λ_{off} における値を示す。 また、吸収断面積 σ は次式で示すように線強度S(T)と、圧力に関するローレンツ拡がりと温度に関するドップラー拡がりの畳み込み関数であるVoigt 関数 $F_V(p,T,\lambda)$ の積に比例する。

$$\sigma(p,T,\lambda) \propto S(T) \times F_V(p,T,\lambda)$$
(2)

$$S(T) = S_0 \left(\frac{T_0}{T}\right)^{\alpha} \exp\left[\frac{E'' hc}{k_B} \left(\frac{1}{T_0} - \frac{1}{T}\right)\right] \quad (3)$$

ここで、hはプランク定数、 k_B はボルツマン定数、 T_0 は参照温度 296.15K である。DIAL による密度 測定では、仮定した気温、気圧を用いて(2)式から $\Delta \sigma$ を推定するため、仮定した気温、気圧と真値と の差(以下、気温仮定誤差 ε_T 、気圧仮定誤差 ε_p) が無視できない。吸収ピーク波長 1572.018nm を 用いる DIAL では、温度 1K,気圧 1hPa あたりの σ の誤差は地上 (296K, 1atm) において 0.07 %/K, 0.1 %/hPa である。そこで、DIAL を利用して気温 を測定する方法に着目し、DIAL で観測される気 温を(1)式の $\Delta \sigma$ に繁栄させ、密度誤差を小さくする 方法を提案する。

DIAL による気温測定法として、以下の方法が 提案されている[2]。 λ_{on} と λ_{off} における受信信号強 度比は(4)式で表される。

$$\frac{S_{on}(z)}{S_{off}(z)} = \frac{E_{on}\beta_{on}}{E_{off}\beta_{off}} \exp\left(-2\int_{0}^{z} N\left[\sigma_{on} - \sigma_{off}\right] dZ\right) \quad (4)$$

ここで、E はレーザ出力、 β は大気の後方散乱係 数であり、 λ_{on} と λ_{off} が非常に近ければ、 β_{on}/β_{off} は1となり無視できる。気圧 p と密度分布 N を仮 定することで(4)式から気温を求めることがで きるが、吸収ピーク波長を ON 波長に用いると、 ε_pが無視できなくなる。

1.57 μ m 帯 CO₂ 吸収線について、気温を一定に し、気圧を変化させたときの吸収断面積の例を Fig.2 に示す。気圧が変化しても吸収断面積が変化 しない波長 λ_1 が存在することが分かる。この λ_1 を 気温測定の ON 波長とすることで、 ε_p に依存しな い気温の測定が可能となる。以下で、①気温依存 性が大きい吸収線、②吸収の大きい吸収線、③他 分子の影響を受けない波長、という3つの指標を 用いて最適波長 λ_1 を決定する。

①気温測定を行う際、吸収スペクトルの気温依存 性が大きいほど、高感度での測定が可能となる。 1.57μm帯CO2吸収線について、気温1Kあたりの 吸収断面積の変化量をFig.3に示す。気温依存性 が大きい波長帯が1.57μm以下と1.58μm以上にあ ることがわかる。

②気温測定精度は、温度に対する(4)式の比の変化量で決まるので、吸収量の大きい ON 波長を選択する必要がある。Fig.1 より、1.572nm付近および1.58nm付近がこれに該当する。

③Fig.1 に示すように、水蒸気の吸収線がいくつか 存在する。(5)式を用いて水蒸気(H₂O)の影響を 調べ、影響の少ない吸収線を選択する。

$$\zeta = \frac{\exp\left(\int_{0}^{z} N_{CO_{2}} \sigma_{CO_{2}} dr\right)}{\exp\left(\int_{0}^{z} N_{CO_{2}} \sigma_{CO} dr + \int_{0}^{z} N_{H_{2}O} \sigma_{H_{2}O} dr\right)}$$
(5)

①~③の条件により、中心波長 1581.9769 nm、 λ_1 = 1581.9926 nm、 λ_{off} = 1582.1170 nm とする組み合わせを選択した。

Fig.1 Transmission for carbon dioxide and water

Fig.2 Absorption cross section for P=0.7, 0.8, 0.9, 1.0 [atm], T=constant.

Fig.3 Difference of absorption cross section for Δ T=1K

3. 反復計算による高精度化

(4)式を用いて気温を測定する際、濃度分布は吸 収ピーク波長(1572.018nm)を用いる DIAL によ って測定した値を用いる。先に述べたようにこの 密度には ε_{p} , ε_{T} の影響を含んでおり、以下の反復計 算を行うことにより、気温と密度の測定精度を向 上させる。ここで仮定した大気モデルは以下の通 りである。高度 z における気温 T(z)、気圧 p(z)は、 それぞれ

$$T(z) = \Gamma z + T_g \tag{6}$$

$$p(z) = p_g \left(T(Z) / T_g \right)^{g_M}_{R\Gamma}$$
(7)

の式で与える。ここで、 Γ は気温減率、 T_g は地上 気温、 p_g は地上気圧、gは重力加速度、Mは大気 のモル質量、Rは気体定数である。大気密度の高 度分布は U.S. Standard 1972 を、エアロゾルの後方 散乱係数は 1.55μm の実測値をモデル化した分布 を用いた。

真値として、CO₂密度の高度分布は 370ppm 一 定として与えた。気温、気圧の高度分布は 2007 年1月1日と7月1日の茨城県館野におけるラジ オゾンデデータを補間して、気温、気圧分布を設 定した。Fig.4 および5に1月と7月の気温分布を 示す。

【反復計算の手順】

- Step1: 仮定した *T*(*z*)、*p*(*z*)から(1)式を用いて CO₂ 濃度 N₀を推定。
- Step2:濃度 N₀ と *T*(*z*)、*p*(*z*)から(4)式により気温 T₀を推定。
- Step3: 気温 T₀と *p*(*z*)から(1)式により濃度 N₁を推定。
- Step4:濃度 N₁と気温 T₀、*p*(*z*)から(4)式により気 温 T₁を推定。
- Step5: Step3~Step4 を繰り返し計算

Fig.4 Temperature model (1 Jan, 2007).

Fig.5 Temperature model (1 Jul, 2007)

5回反復計算し、気温と密度の値が収束するか 評価した。ここで、ライダー信号の統計誤差(ラ ンダム誤差)や装置に起因するシステム誤差は考 慮していない。1月のデータを用いた密度誤差お よび気温誤差をFig.6,7に、7月のデータを用いた 密度誤差および気温誤差をFig.8,9に示す。

1月の気温は逆転層が存在し、*T*(*z*)と真値(sonde) との差が 10K 前後と大きい。このため、通常の DIAL 観測だけでは密度誤差、気温誤差とも大き い。反復計算を行うことによってそれぞれの誤差 は真値に近い値に収束していく。

7月の気温は高度 1km 付近で *T*(*z*)と真値(sonde) が一致し、それ以上の高度の温度勾配はモデルの 値-6.5K/km より大きい。Fig.8 において、通常の DIAL 観測の密度誤差は高度 1km 付近で誤差 0% となるが、上空に行くほど大きな誤差となり、温 度推定誤差と同じ動きをしている。こちらも反復 計算を行うことによってそれぞれの誤差は真値 に近い値に収束していく。

Fig.6 Error profiles for CO_2 density measurement with 1572.018nm absorption line. (1 Jan., 2007)

Fig.7 Error profiles for the atmospheric temperature

with 1581.977nm absorption line. (1 Jan., 2007)

Fig.8 Error profiles for CO_2 density measurement with 1572.018nm absorption line. (1 Jul., 2007)

Fig.9 Error profiles for the atmospheric temperature with 1581.977nm absorption line. (1 Jul., 2007)

4. まとめ

DIAL による濃度測定では、気温と気圧を仮定し ているため、この仮定と真値との差が CO₂濃度誤 差となり、正確な気温・気圧の測定が重要である。 密度観測と同じ頻度でラジオソンデ観測するこ とは現実的ではなく、ライダー観測に頼ることと なる。しかし、DIAL による気温測定も気圧と密 度を仮定しており、真値との差が無視できない。 密度誤差は、気温推定誤差が大きく寄与しており、 気温モデルの設定次第では密度誤差が大きくな る。

そこで、気圧によって吸収断面積が変化しない 波長を気温測定の ON 波長に用いる方法を提案し、 測定した結果を用いて反復計算させることによ って CO2 密度、気温を高精度で測定することが可 能であることを、計算機シミュレーションによっ て示した。

今後、ライダー信号強度に起因するランダム誤差 を考慮した密度測定の高精度化について検討す る。

参考文献

[1] Daisuke Sakaizawa, Chikao Nagasawa, Tomohiro Nagai, Makoto Abo, Yasukuni Shibata, Masahisa Nakazato, and tetsu Sakai, "1.6 µm Differential absorption lidar using the photon counting detection for the vertical Carbon dioxide profiles" Submitted to Applied Optics(Appl. Opt.) 2008

[2] Syed Ismail and Edward V. Browell, "Airborne and spaceborne lidar measurements of water vapor profile: a sensitivity analysis" Appl.Opt. 28, 3603-3615(1989).