高出力 Tm,Ho:YAG セラミックレーザー

High power Tm,Ho:YAG ceramic laser

湯本正樹^{2,3}, 浦田佳治¹, Oleg A. Louchev¹, 斎藤徳人², 和田智之^{1,2,3} Masaki Yumoto^{2,3}, Yoshiharu Urata¹, Oleg A. Louchev¹, Norihito Saito² and Satoshi Wada^{1,2,3} (株)メガオプト¹, 理化学研究所², 東京理科大学³ Megaopto Co. Ltd¹, RIKEN², Tokyo University of Science³

Abstract

We demonstrated a high-power 2 μ m pulse laser for the remote sensing applications. Composite-type Tm,Ho:YAG ceramic was used as a laser medium to avoid the self-absorption by the active ions. At the pump energy of 3.28 J, the output pulse energy and the pulse width were 21.0 mJ and 183 ns, respectively. TEM00-like profile was measured under that condition.

1. はじめに

近年、2µm帯の波長を直接発振可能な全固体高出力レーザーの開発が注目されている。高出力 2µm レーザーはライダーや環境計測などへの応用が可能であり乱気流レーザーセンシングシステムの開発 にも適用できる。さらに 2µmレーザーを励起光源とした中赤外OPO光源は医療や各種診断、検査にも用 いることができる。特に、我々は乱気流レーザーセンシングシステムへの応用を前提とした高出力 2 ミ クロン光源の開発を目的としている。これらの応用を実現させるためには、レーザーの偏光制御や発振 スペクトルの狭帯域化が要求され、さらに高いピークパワーが必要となる。そのため、偏光制御を行い 高いピークパワーを得るために一般的かつ汎用性の高いQ-スイッチを用いて高出力 2µmレーザーの構 築を試みた。われわれは、2µm帯のレーザー媒質にTm,Ho:YAGセラミックを使用し、Q-スイッチ発振さ せることに成功した。^{1,2)}また、20mJ以上のパルスエネルギーを取り出すことに成功した。今回、さら なる高出力化を目指し、励起用LDのパルス幅や冷却水の温度を変化させたので詳細に報告する。

2. 励起モジュール及びレーザー共振器について

Tm,Ho レーザーなどの準3準位系レーザーは、基底準位とレーザー下準位のエネルギー差が小さく室温 付近でレーザー下準位に熱的に励起されている分布数が多く、反転分布が形成しづらい。反転分布が十分に 形成されない条件下では、自らが発光した光子を自らが吸収する自己吸収が発生し負の利得となり、性能が低 下する問題がある。そこで、本研究ではLDによる励起領域と活性イオンのドープ領域を一致させ、サ イドポンプ構成ながら非励起領域における自己吸収を完全に排除した(図1)。次に、図2に実験装置の 概略図を示す。図1の構造を持つ励起モジュールに3mmφのレーザーロッド、600WのLDを搭載した。 励起モジュールには準連続波(QCW)動作のLDを用いており、そのパルス幅は0.5msとした、繰り返し 周波数は10Hz、冷却水の温度は20℃であった。高反射ミラーと出力ミラー(反射率85%)の間に2つ 配置した。また共振器長は100cm であった。Q-スイッチの実験を行うため、出力ミラー側にQ-スイッチ (MolTech 社製、AO-Qスイッチ)を配置した。上記の共振器構成でQ-スイッチ動作における出力特性、パル ス幅、及びビームプロファイルの測定を行った。

3. 実験結果

図3にQ-スイッチ動作における出力特性を示す。レーザー結晶への励起エネルギーが5.6mJ付近でレーザー発振が開始した。投入エネルギーの増加と共にパルスエネルギーが増加し、パルス幅は減少することが確認できた。投入エネルギーが3.28Jのとき、21.0mJのパルスエネルギーが確認され、パルス幅は183nsであった。また、その時のビームプロファイルを図4に示す。TEM₀₀ライクなビームプロファイルが観測された。ここで、21.0mJのエネルギーを取り出そうした時に、励起チャンバー②のQスイッチ側の端面が損傷した。ロッド表面の損傷は明らかに無反射(AR)コートで発生しており、典型的コーティング損傷を示す変色が見られた。ロッド端面でのビーム径からコーティングのダメージ閾値を見積もると135.2 MW/cm2であった。そこで今回、我々は、よりパワー耐性の高いBrewsterカットされたロッドを用いてARコートを排除した共振器を構成した。またロッド端面でのビーム径を拡張することで、さらなる高出力化を試みたので講演にて詳細を報告する。

4. まとめ

乱気流レーザーセンシングシステムの開発を前提とした高出力 2µmレーザーの開発を行った。我々は、2µm帯のレーザー媒質にTm,Ho:YAGセラミックを使用しQ-スイッチ発振させることに成功した。レ ーザー結晶への励起エネルギーが 3.28Jの場合、21.0mJのパルスエネルギーが確認され、パルス幅は 183ns であった。また、その時にはTEM₀₀ライクなビームプロファイルが観測された。

(本研究開発報告は情報通信研究機構(NICT)の民間基盤技術研究促進制度による委託研究の成果である。)

- Y. Urata, M. Yumoto, O. A. Louchev, N. Saito and S. Wada: Ext. Abstr. (55th Spring meet., 2008); Japan Society of Applied Physics and Related Societies, 28a-NC-3 [in Japanese].
- (2) M. Yumoto, Y. Urata, O. A. Louchev, N. Saito and S. Wada: Ext. Abstr. (55th Spring meet., 2008); Japan Society of Applied Physics and Related Societies, 28a-NC-4 [in Japanese].