コヒーレント白色光を用いた偏光ライダー

Polarization Backscattering Lidar Using a Coherent White Light Continuum

染川智弘¹、山中千博¹、藤田雅之²、M.C. GALVEZ³ T. SOMEKAWA¹, C. YAMANAKA¹, M. FUJITA², M. C. GALVEZ³

¹大阪大学大学院理学研究科宇宙地球科学専攻、²(財)レーザー技術総合研究所、³デ・ラ・サレ大学

¹Department of Earth and Space Science, Osaka University, ²Institute for Laser Technology, Osaka University, ³Physics Department, De La Salle University, Philippines

The polarization characteristics of lidar scattering from clouds were measured with a white light lidar system using a coherent white light continuum generated by a terawatt femtsecond laser system. The observed depolarization ratios matched literature values for the ice clouds and the mixed phase clouds. These experimental data showed a trend similar to that measured by the conventional depolarization lidar system. The possibility of multi-wavelength depolarization lidar measurement to monitor clouds and aerosols was also demonstrated.

1. はじめに

ピーク強度が1TW におよぶパルスレーザー光を希ガス中に集光して得られる遠赤外から紫外にお よぶ超広帯域のコヒーレント白色光¹は、指向性、干渉性などの元のレーザー光の性質を有しており、 パルス幅も短く、新しい光源として注目されている。このコヒーレント白色光を環境計測に利用した白 色光ライダーは、350nm, 550 nm, 700 nm の多波長で雲やエアロゾルの同時観測に成功し²⁰、Mie 散 乱理論より粒径分布の解析も行われている。

レーザーの偏光特性を利用した偏光ライダーは、偏光解消度の測定によって、非球形である物質は他のエアロゾルとの判別がある程度可能になる³。そのため、雲の相の識別や、形状が一般的に非球形である黄砂エアロゾルの観測が行われている。しかしながら、非球形でも粒子の大きさが使用するレーザーの波長に比べ十分小さいと偏光解消度は大きくならないとの報告もあり⁴、多種多様な雲・エアロゾルに対しては、偏光ライダーを多波長で行うことが必要になると考えられる。

本研究では多波長同時観測が可能なコヒーレント白色光を用いた偏光ライダーの開発を進めており、 白色光の 450nm で得られた観測結果を紹介する。

2. 白色光ライダー実験

コヒーレント白色光を用いた 5 多波長 偏光ライダー実験の模式図を Fig. 1 に示 す。波長 800 nm、パルス幅 100 fs、繰 り返し周波数 10Hz、ピーク強度約 1 TW のレーザー光を焦点距離 5 m のレンズで 9 m の Kr ガスセルに集光させることに より、350 nm から 950 nm に及ぶ超広 帯域のコヒーレント白色光に変換する。 得られた白色光レーザーは曲率 10 m の ミラーで平行にコリメートされ、大気に 打ち上げられる。

Fig. 1 White light lidar system configuration

コヒーレント白色光を偏光ライダーの光源として利用するには、白色光の線形偏光が必須である。そのため、生成した白色光の偏光特性を確認した。白色光は元のレーザーと同様に線形偏光を保持しており、白色光生成による線形偏光の回転も観察されなかった。Kr ガスを用いて生成させた白色光は偏光 ライダーに使用できるだけでなく、種々の分光計測への応用も期待できる。

大気からの散乱光は口径 30 cm の望遠鏡で集め、レンズと 2 対の天頂プリズムで作成したライトガ イドを通り、分光装置に導かれる。分光装置は 350 nm,450 nm,550 nm,700 nm,800 nm における多波 長 Mie 散乱ライダーと、450 nm で P 偏光と S 偏光の偏光解消度を同時に計測することができる。打 ち上げ白色レーザーと観測系の偏向面を合わせるために、十分に減衰させた白色光を 2 対のミラーで直 接望遠鏡に入れ観測装置に導き、P 偏光が最大、S 偏光が最小となるように分光装置の /2 波長板の角 度を調整した。光電子増倍管からの散乱信号はオシロスコープで計測し、500 回積算で1 分ごとに観測 を行った。

3. 観測結果

Fig. 2 に 2005 年 3 月 23 日 1:53~ 2:22 の 30 分間にわたり継続的に観測 した 6 チャンネル同時計測の信号を示 す。雲やエアロゾルの空間的な分布構 造を得るため、距離の 2 乗で補正して いる。

0.6km、1.0km に見られる信号が雲 の信号であり、時間による雲の高低が 見てとれる。2 時 22 分の 450 nm での 雲の偏光解消度(=S/P)は 0.6km の 雲で 0.63、1km の雲で 0.58 と高い値 を示した。この雲は氷晶の雲だと考え られ ⁵⁾、雲の偏光解消度の観測に白色 光ライダーとして初めて成功した。

Fig. 2. Simultaneous measurements of the range squared corrected time-dependent backscattered signal from atmosphere on 23 March 2005 1:53~2:22.

4. まとめ

コヒーレント白色光を用いた偏光ライダーは単波長レーザーと同じように大気観測が行え、1台のレ ーザーで同時に多種多様のエアロゾルのモニタリングを行えるコヒーレント白色光の有用性を示した といえる。今後は多波長偏光ライダーに向けた室内実験により黄砂など特定のエアロゾルに対して最適 な波長域を見つけ、大気観測を行いたい。また、未使用であるコヒーレント白色光の赤外域を用いて、 より広範囲な大気の観測につなげたい。

参考文献

- 1) H. Nishioka et al, Opt. Lett., 20, 2505 (1995).
- 2) M. Galvez et al, Jpn. J. Appl. Phys., 41, No3.A, L284 (2002).
- 3) K. Sassen, Bull. Am. Meteorol. Soc., 72(12), 1848-1866 (1991).
- 4) M. I. Mishchenco et al, Geophys. Res. Lett., 25, 309-312 (1998)
- 5) K. Sassen et al, J. Atmos. Sci., 47, 1323-1350 (1990)