立坑を用いた人工雲実験における雲底のライダー計測

Measurement of cloud base using a lidar for artificial cloud experiment in a vertical shaft in a mine

松井一郎、杉本伸夫、清水厚、藤吉康志¹

Ichiro Matsui, Nobuo Sugimoto, Atsushi Shimizu and Yasushi Fujiyoshi¹ 国立環境研究所、北海道大学低温科学研究所¹ National Institute for Environmental Studies, Hokkaido University¹

Abstract A small Mie lidar was employed for measuring profiles of extinction coefficient at cloud base in the artificial cloud experiment using a vertical shaft in the Kamaishi mine.

1 はじめに

廃坑となった鉱山の立坑を実験装置として活 用し、雲の生成を人工的に行う世界的にもユ ニークな研究が行われている^[1]。立坑内は自 然界と遮断された状態であることから、安定な 実験条件を設定することが可能であり、雲の発 生機構に重要な要素となるエアロゾルや風速を 制御し、鉛直方向に発達していく雲粒子の観測 が可能である。ここでは、坑底に設置した小型 ミー散乱ライダーで行った雲底高度の観測の概 要と結果を報告する。

2 立坑の概要

実験は、岩手県遠野市上郷町の釜石鉱山日峰 坑中央立坑で行われた。立坑内部の概略図を Fig.1 に示す。内部は平均断面積 3.05 × 5.71m、 観測可能高度は 427.5m である。底部は標高 250m、 頂部は標高 680m に位置する。坑底部より雲粒 子の核となる (NH₄)₂SO₄、NaClの溶液を一定 量噴射し、坑頂の排気ファンにより上昇流速度 を制御している。

3 ライダーシステム

使用したミー散乱ライダーは、光源にフラッ シュランプ励起の Nd:YAG レーザー (運用時 の出力約: 10mJ@532nm, 10mJ@1064nm, 繰 返し 10Hz)、受光望遠鏡 (直径:12cm) で受光 し、2 波長 (532/1064nm) 信号および偏光解消 度 (532nm) を PMT と APD により電気信号に 変換後、デジタルオシロと PC の組合わせで距 離分解能 1.5m で高度 1km までの信号波形を 10 秒間積算で取得している。装置は、ガラス窓を 張った筐体の中に入れて、立坑内から落ちてく る漏水に対して簡易防水を施した。

4 消散係数の導出

測定したデータの解析には、Klettの方法を 用いて消散係数を求めた。Fig.2 に高度105mで 境界値として5e-0,5e-1,5e-2 を与えてインバー ジョンを行った結果を示す。境界値に対する依 存性は高度60m以下でよく収束していること が確かめられた。ここでは、雲底高度を35m付 近と定義した。

5 観測結果

THI 表示を行った観測結果の例を Fig.3 に示 す。この図は、11月27日の1時~7時(UTC) (日本時間10時~16時)間の高度105mまでを 消散係数で濃淡表示している。2時30分(UTC) に雲底高度が高度35mから25mに変化してい る様子が見える。これは、噴霧している溶液濃 度が1200/ccから2400/ccに増加したことによ り雲核の成長が早まったことを示していると考 えられる。観測期間中での各実験条件ごとの平 均的な高度分布を Fig.4 に示す。この図から、

Fig. 2: Dependence on boundary condition

Fig. 1: Schematic diagram of a vertical shaft.

雲底高度の変化が 5 つのタイプに分類できた。 観測期間中の観測条件と Fig.4 に分類した雲底 高度の分類を Table.1 にまとめた。この結果か ら、溶液濃度を大きく変化させた時と溶液成分 を $(NH_4)_2SO_4$ から NaCl に変更した時に顕著 に雲底高度が変化したことがわかる。

6 おわりに

立坑で行われた人工雲実験でのライダーによ る雲底高度の観測について述べた。今後、直接 サンプリングによる結果やモデルとの比較検討 を予定している。

Fig. 3: Time-height indication of extinction coefficient of cloud.

参考文献

[1] 山形 定: 立坑を用いた人工雲実験, エア ロゾル研究, 18, 226-270 (2003).

Fig. 4: Averaged profile for each event

日	イベント	開始	終了	上昇風速	溶液成分	エアロゾル数	雲底
	No		\min	$\mathrm{m/sec}$		/cc	タイプ
11/24	3	12:00	13:00	1.5	Back ground	-	А
	4	13:00	14:30	0.8	$(\mathrm{NH}_4)_2\mathrm{SO}_4$	30	А
	5	14:30	14:50	1.0	$(\mathrm{NH}_4)_2\mathrm{SO}_4$	30	А
	6	14:50	16:00	1.5	$(\mathrm{NH}_4)_2\mathrm{SO}_4$	30	А
11/25	7	10:00	11:30	0.8	$(\mathrm{NH}_4)_2\mathrm{SO}_4$	90	В
	8	11:30	12:00	1.0	$(\mathrm{NH}_4)_2\mathrm{SO}_4$	90	В
	9	12:00	13:00	1.5	$(\mathrm{NH}_4)_2\mathrm{SO}_4$	90	В
	10	13:00	14:30	0.8	$(\mathrm{NH}_4)_2\mathrm{SO}_4$	200	В
	11	14:30	15:00	1.0	$(\mathrm{NH}_4)_2\mathrm{SO}_4$	200	В
	12	15:00	16:00	1.5	$(\mathrm{NH}_4)_2\mathrm{SO}_4$	200	В
11/26	13	10:20	11:50	0.8	$(\mathrm{NH}_4)_2\mathrm{SO}_4$	600	С
	14	11:50	12:05	1.0	$(\mathrm{NH}_4)_2\mathrm{SO}_4$	600	С
	15	12:05	13:20	1.5	$(\mathrm{NH}_4)_2\mathrm{SO}_4$	600	С
	16	13:20	15:00	0.8	$(\mathrm{NH}_4)_2\mathrm{SO}_4$	1200	С
	17	15:00	16:00	1.0	$(\mathrm{NH}_4)_2\mathrm{SO}_4$	1200	С
11/27	18	10:00	11:30	1.5	$(\mathrm{NH}_4)_2\mathrm{SO}_4$	1200	С
	19	11:30	14:00	0.8	$(\mathrm{NH}_4)_2\mathrm{SO}_4$	2400	D
	20	14:00	15:00	1.0	$(\mathrm{NH}_4)_2\mathrm{SO}_4$	2400	D
	21	15:00	16:00	1.5	$(\mathrm{NH}_4)_2\mathrm{SO}_4$	2400	D
11/28	22	10:00	11:25	0.8	NaCl	2400	Е
	23	11:25	12:25	1.5	NaCl	2400	Е

Table. 1: Time table of experimental condition