0-5-13

対流圏気温分布計測のための UV 城レイリー散乱ライダーシステムの開発

Development of UV Rayleigh scattering lidar system for measuring temperature profiles of the troposphere

華灯鑫¹、内田勝²、戴琮²、小林喬郎²

D. Hua¹, M. Uchida², C. Dai², and T. Kobayashi²

1. 英弘精機(株)、2. 福井大学工学研究科

1. Eko Instruments Trading Co. Ltd., 2. Graduate School of Engineering, Fukui Univ.

Abstract: A Rayleigh scattering lidar system has been developed based on the high-spectral resolution lidar (HSRL) technique for measuring vertical profiles of atmospheric temperature in the troposphere. Three narrow-band Fabry-Perot filters are used to separate the Mie and Rayleigh backscattering signals. The Mie signal correction method was applied in the signal processing for improving the Mie blocking ratio of the Rayleigh filters. The eye-safe 355nm ultraviolet wavelength is used for operational field applications. In a preliminary experiment, it was shown that the temperature sensitivity of the filter is 0.5%/K and the measurement accuracy is about 1K at 4km height.

1. はじめに

気温は風速、水蒸気に並ぶ最も重要な気象計測要素の一つである。地球温暖化が益々深刻となり つつある現在では、地球温暖化現象の解明の第一歩として、気温のリアルタイムかつ高精度での遠隔 計測機器の開発が重要な課題となってきた。現在、気温の高度分布計測にはラジオゾンデが利用され ているが、測定位置の精度やリアルタイム性、コスト、申請手続きなどの問題があり、大気動態や温暖化 メカニズムの解析手段としては不十分である。

一方、ライダーによる気温計測法として、レイリー散乱による分子密度法¹⁾、高分解能スペクトル法²⁾、 差分吸収ライダー(DIAL)法³⁾、回転ラマン法⁴⁾などが提案され、検討されてきた。最近、エアロゾル粒子 の多い高度 5 km以下の低層対流圏での気温計測ライダーは、波長 532nmの回転ラマン散乱ライダー⁵⁾ と、ヨウ素吸収フィルタを用いる高分解能スペクトルライダー(HSRL)⁶⁾が主に研究されている。回転ラマ ンライダーでは、分光フィルタの特性の改善が進んでいるが、ラマン散乱の散乱係数が小さいため、高 出力レーザと大型なシステム構成が必要である。また、散乱効率が大きいレイリー散乱を利用するHSRL 方式では、ヨウ素吸収フィルタの不安定性などによる測定精度が低い問題が残されている。さらに、両者 とも、アイセーフ特性を満たしてないため、一般的な実用には限界がある。

本研究では、可視域波長よりレイリー散乱強度が高くアイセーフの紫外域波長を利用し、高分解能の 狭帯域エタロンを用いるHSRL 方式のレイリー散乱ライダーを開発した⁷⁾。とくに、ミー散乱検出系を設置 し、ミー散乱を同時にかつ高精度で計測し、レイリー散乱に含まれるミー散乱の影響を補正することによ り、ミー散乱遮断率を改善する方法を検討した。本報告ではシステムの分光原理とミー散乱の補正法に 加えて基礎的実験結果を示したい。

2. 気温の測定原理

Fig.1は大気からのミー散乱とレイリー散乱スペクトルとフィルタの透過スペクトルを示す。大気分子の 熱運動によるドップラー広がり幅 Δv_T と気温 T (K)の関係は波長 355nm で Δv_T =0.225 $T^{1/2}$ (GHz) となる。レ イリー散乱測定では Filter-1 と Filter-2、ミー散乱測定では Filter-3 を用いている。3 種類のフィルタを透 過した各チャンネルにおける受信電力を P_i (i=1, 2, 3)とし、気温に対するシステム応答関数を R_T =(P₁-P₂)/P₂と定義する。すると温度 T での応答関数 R_T の変化は気温測定感度 Θ_T =(1/ R_T)($\Delta R_T/\Delta T$)と なる。この気温測定感度を用いて、信号出力により R_T 値から気温変化を求める、ミー散乱強度が強い場 合では、検出したミー散乱強度 P₃を用いてレイリー受信電力 P₁,P₂ に含まれるミー散乱成分を補正する 方法を検討した⁷。

Fig.1 Spectral profiles of the Mie and Rayleigh scattering and filter transmission functions.

Fig. 2 Schematic of the Rayleigh lidar system for temperature measurement.

3. システムの構成

HSRL 方式のレイリー散乱ライダーシステムの構成を Fig.2 に、システムの仕様を Table1 に示す。周波 数の安定化した Nd: YAGレーザの第3高調波(波長355nm)のビームはビームエクスパンダーを介して、 大気へ出射させる。大気からの後方散乱光を直径25cm の集光鏡で受信して、マルチモードファイバー を用いて3個の高分解能 FP エタロンによる分光フィルタ系へ経て、3個の検出器で検出される。信号は デジタルメモリに記録され、パソコンで信号処理される。フィルタの気温計測感度 Or とレイリー散乱の透 過率を最適化して Filter-1 と Filter-2 の中心周波数のシフトは、レーザの周波数に対してそれぞれ 1.0GHz, 3.5GHz と設定された。理論計算では気温 300K における気温計測感度 Or =0.5%/K となる。

4. 基礎実験

Fig. 3 には R^2 補正した各チャンネルの受信電力 と大気の散乱比 (β_m/β_R)を示す。この結果より Filter-1 のミー散乱遮断率が3桁以上得られているこ とが分かった。さらに、データの処理でレイリー散乱 信号 P_2 に含まれているミー散乱成分はミー散乱強 度 P_3 によって補正できる。

Fig. 4 には同じの時間帯で水平方向と垂直方向 で計測した気温分布を示す。さらに垂直方向で計 測した気温分布は水平方向の計測結果及び標準 大気の気温低減率(-6.5K/km)と比較する結果を示 す。信号の強度からの高度 4 kmで気温計測値のパ ラツキの標準偏差は1K となった。

Table 1 System specifications	
Laser wavelength	354.7 nm
Laser energy per pulse	200 mJ
Pulse Repetition Rate	20 Hz
Spectral line width	90 MHz
Telescope diameter	250 mm
Field of view	0.1 mrad
Fabry-Perot etalon (Freq.shift,FWHM)	
Rayleigh-1	(1.0 GHz, 300MHz)
Rayleigh-2	(3.5 GHz, 500MHz)
Mie-3	(0 GHz, 200MHz)
Detector: PMT	Hamamatsu R3896

Fig. 3 Range-corrected power and backscattering ratio (β_m/β_R) as a function of altitude (10⁴ shot average, 150mJ laser energy and 50m-range resolution).

Fig. 4 Horizontal and vertical temperature profiles (10⁴ shot average and 50m-range resolution)

5. まとめ

本研究では高分解能の FP エタロンを用いたレイリー散乱気温ライダーシステムが開発した。ミー散乱 とレイリー散乱を分離し、データ処理によりミー散乱を補正して、レイリー散乱のチャンネルでのミー散乱 遮断率として3 桁以上が得られた。気温 300K に対するシステムの気温計測感度は 0.5%/K となり、高度 4km で1K の気温計測パラツキの標準偏差が得られた。さらに水平方向で計測した気温変化、気温低 減率と比較を行った。今後、システムの効率とフィルタのミー散乱遮断率を向上し、システムの改善を行 うと共に、ラジオゾンデを利用して気温計測の精度を検証したい。

参考文献

- 1) A. Hauchecorne and M. L. Chanin, Geophys. Res. Lett. 7, 565-568 (1980).
- 2) H. Shimizu, K. Nogachi, and C. Y. She, Appl. Opt. 25, pp. 1460-1466(1986).
- 3) F. K. Theopld, and J. Bosenberg, J. Atmospheric and Oceanic Technology, 10, pp. 165-179 (1993)
- T. Kobayashi, T. Taira, T. Yamamoto, A. Hori, and T.Kitada, Abstracts of 16th ILRC, pp. 205-208, Boston, (1992)
- 5) A. Behrendt, T.Nakanura, M. Onishi, R.Baumgart, and T. Tsuda, Appl. Opt. 41, 7657-7666 (2002).
- 6) J. W. Hair, L. M. Caldwell, D. A. Krueger, and C. Y. She, App. Opt. 40, 5280 (2001)
- 7) D. Hua, M. Uchida, M. Imaki, and T. Kobayashi, Proc. of SPIE, Vol. 4893, 488-495(2002)