# ドップラー信号の位相自己補償による長時間コヒーレント積分方式

Self-Compensated Coherent Integration Method for Doppler Lidar System

## 亀山 俊平、藤坂 貴彦、浅香 公雄、安藤 俊行、平野 嘉仁

Shumpei Kameyama, Takahiko Fujisaka, Kimio Asaka, Toshiyuki Ando, and Yoshihito Hirano 三菱電機(株) 情報技術総合研究所 Mitsubishi Electric Corporation, Information Technology R&D Center

### <u>Abstract</u>

In Doppler lidar systems, there is a great interest in coherent integration of heterodyne-detected signals over many estimates. However, it has been impossible when heterodyne-detected signals are randomly phased. In this paper, a new signal processing method named SCCI (Self- Compensated Coherent Integration) which enables a coherent integration over a longer time, compared to a coherence time of a back-scattered signal, is proposed. We confirm the effect experimentally using a  $1.5-\mu$  m wind sensing lidar system.

# <u>1. まえがき</u>

ドップラーライダの信号処理部では、PP(Pulse-Pair)<sup>1-3</sup>、PPP(Poly-Pulse-Pair)<sup>3-4</sup>、FFT(Fast Fourier Transform)<sup>3.5</sup>、ML(maximum likelihood)<sup>6.7</sup>、ANF(Adaptive Notch Filter)<sup>8</sup>、AR(Auto-Regressive)<sup>3.9,10</sup>、 ARMA(Auto-Regressive and Moving Average)<sup>11</sup> といった方式を用いてドップラー周波数の推定を行 う。得られた信号が推定可能なSNRより低い場合には、これらの方式により得られた結果を積 分することにより、SNRを改善することが必要とされる。得られた信号間の位相と振幅の変化 が少ない場合には、複素振幅信号を同相で足し合わせることが可能であり、この場合、N個の信 号での積分によるSNR改善はN倍となる。しかしドップラーライダの場合、コヒーレント積分 可能なドップラー信号の信号長は、反射ターゲットの性質で決まるコヒーレント時間により制限 されるため、信号長がコヒーレント時間を超える場合には、複素振幅の同相での足し合わせが困 難であり、SNR改善は $\sqrt{N}$ 倍の強度の足し合わせ(インコヒーレント積分)を用いるのが一般 的であった。本論文では、信号長がコヒーレント時間を超える場合においてもコヒーレント積分 可能な、自己補償式コヒーレント積分(Self- Compensated Coherent Integration、以下 SCCI)方式に ついて述べる。この方式はドップラー信号の位相を自己補償することにより、位相揺らぎとは関 係なく長時間コヒーレント積分を可能とするものである。本方式の従来方式に対する優位性につ いて、1.5µmのCW風速測定ライダを用いて確認したので合わせて報告する。

### 2. SCCI (Self- Compensated Coherent Integration)方式

SCCI 方式のブロックダイヤグラムを Fig. 1 に示す。パルスを送受する場合においては、送信パルス幅を反射ターゲットのコヒーレント時間よりも短い値とし、受信信号においてターゲットレンジに相当する位置のドップラー信号をパルス幅と同じ長さの時間ゲートで切り出す。CWを送受する場合においては、ドップラー信号をコヒーレント時間よりも短い長さの時間ゲートにより連続的に切り出す。



Fig. 1. Block diagram of SCCI.

ゲート番号を n、ゲート内サンプル番号を mとし、ゲート信号を A(n,m)とする。この信号は次式(1)に示すように前後半分割する。

$$A^{former}(n,k) = A(n,k)$$

$$A^{latter}(n,k) = A\left(n,\frac{M}{2}+k\right)$$
(1)

ここで k は前後半各部内でのサンプル番号、M はゲート内サンプル数である。前後半各部をフー リエ変換し、前後半各部のスペクトルを次式(2)により計算する。

$$S^{former}(n,l) = \sum_{k=0}^{M-1} A^{former}(n,k) e^{j2\pi \frac{kl}{M}}$$
  

$$S^{latter}(n,l) = \sum_{k=0}^{M-1} A^{latter}(n,k) e^{j2\pi \frac{kl}{M}}$$
(2)

ここで、*l*は周波数軸上でのサンプル番号(*f*=*l*/ *τ*,*f*:周波数,*τ*:サンプリング周期)である。式 (2)の処理はドップラー信号のコヒーレント積分に相当する<sup>12</sup>。次に、前半部と後半部のクロ ススペクトルを次式(3)により求める。

$$C(n,l) = S^{former}(n,l) \times S^{latter}(n,l) *$$
  
=  $A_a^{former}(n,l) \cdot A_a^{latter}(n,l) \cdot e^{j\phi(n,l)}$  (3)

ここで、 $A_a^{former}(n,l)$ および $A_a^{latter}(n,l)$ は前後半各部のスペクトルの振幅項である。また、 $\phi(n,l)$ は 前後半間の位相差である。信号長がコヒーレント時間を超える場合、各ゲートのスペクトルの位 相は揺らいでいるが、前後半間の時間差がコヒーレント時間よりも短いために位相差 $\phi(n,l)$ は一 定となる。したがって、この処理は各ゲートにおける位相自己補償に相当する。式(3)で得た クロススペクトルを、次式(4)に示すようにドップラー信号全長わたって積分する。

$$D(l) = \sum_{n=0}^{N-1} C(n, l)$$
(4)

....

ここで、Nはドップラー信号から切り出した全ゲート数である。各ゲートにおける位相差  $\phi(n,l)$ は 一定であるので、この処理はドップラー信号全長にわたるコヒーレント積分に相当する。ドップ ラー周波数は、式(4)のピーク周波数から検出される。なお、以上に述べた検討においては、 ゲート信号の分割を前後半分割していたが、ゲート内サンプルを交互にサンプルし、偶奇分割を 行っても良い。しかし、ノイズのコヒーレント時間がサンプリング間隔以上の場合においては前 後半分割する必要がある。

ターゲットが等速運動している限り、この方式により長時間の信号加算が可能である。風速検 出等の場合でも、ドップラー周波数は1sのオーダーで一定であることが知られており<sup>13</sup>、この時 間範囲内での信号加算が可能である。

### 3. SNRに関する検討

積分後のSNRについて、従来方式と、SCCI方式との比較を行う。1ゲートでのSNRを SNR<sub>0</sub>とする。インコヒーレント積分方式の場合、積分前のSNRは、SNR<sub>1</sub> = SNR<sub>0</sub>である。SCCI 方式では、ゲート信号を2つに分割し、さらにクロススペクトルを計算することで振幅を自乗し ている。したがって、SNR<sub>0</sub>が0dBより十分に小さい場合、SCCI方式での積分前のSNRは SNR<sub>s</sub>  $\cong$   $(SNR_0/2)^2$ と近似できる。インコヒーレント積分方式での積分後のSNRがSNR<sub>1</sub>· $\sqrt{N}$ と なるのに対し、SCCI方式ではSNR<sub>s</sub>·Nとなる。このことから、SCCI方式がインコヒーレント積 分方式に対して優位となるのは、次式(5)の条件を満足するときである。

 $N > \frac{16}{SNR_0^2}$ 

(5)

式(5)と各方式の積分後のSNRの計算式とから、所要SNRが6dBを超える全ての場合において、SCCI方式が優位となることが分かる。また、SNR<sub>0</sub>の値がより小さく、所要SNRがより高くなる程、SCCI方式の優位性はより大きくなる。

#### 4. 実験結果

SCCI 方式の優位性について、波長 1.5 µm のCW風速測定ライダを用いて確認実験を行った。 送信パワー6W、焦点距離 300m とし、ローカル光強度を変化させることでSNRを変えて測定を 行った。ゲート時間は 0.5 µs とした。SCCI 方式での処理結果を Fig. 2 に示す。Fig. 2 においては、 信号レベルおよびノイズレベルを明確に把握するために、処理結果に30回のビデオアベレージ を施した結果を示している。Fig. 2(a)はSNRを高い状態に設定した際の結果であり、周波数 16MHz においてドップラー周波数を検出することができる。また、信号レベルが一定であるのに 対し、ノイズレベルが積分回数に逆比例して低減されており、SCCI 方式によるコヒーレント積分 の効果を確認することができる。Fig. 2(a)の状態でローカル光強度を低減し、SNRを低い状態に 設定した結果を Fig. 2(b)に示す。SNRが低い場合においても、ノイズレベルの低減により積分回数100以上の場合においてドップラー周波数を検出できていることが分かる。

Fig. 2(b)の結果を得た際の受信信号に対し、2つの方式で処理した際の積分回数とSNRの関係 を Fig. 3 に示す。SNRは、信号レベルと、ノイズレベルの分散値との比により求めた。3. で 述べた理論値を Fig. 3 に合わせて示す。理論値における積分前のSNRは実験値にいて十分な回 数の積分を行った後の信号レベルとノイズレベルとから求めた。実験値と理論値は良く一致して おり、SNR6dB以上で SCCI 方式が優位となっていることが分かる。



Fig. 2. Doppler spectra processed by SCCI ( (a) SNR: moderate, (b) SNR: Low ).



Fig. 3. Integration times versus SNR.

<u>5. まとめ</u>

ドップラー信号の位相自己補償による長時間コヒーレント積分方式(SCCI 方式)について報告 した。SCCI 方式の優位性を波長 1.5 μmの風速測定ライダにより確認した。

<u>参考文献</u>

- 1) K. S. Miller and M. M. Rochwarger, IEEE Trans. Inform. Theory, vol. IT-18, 588-596, (1972).
- 2) D. S. Zrinc, IEEE Trans. Geosci. Electron., vol. GE-17, 113-128, (1979).
- 3) P. R. Mahapatra and D. S. Zrinc, IEEE Trans. Geosci. Remote Sens., vol. GE-21, 491-501, (1983).
- 4) R. W. Lee and K. A. Lee, *Proc.* in Topical Meeting on Coherent Laser Radar for Atmospheric Sensing, Aspen, Co, OSA, 1-4, (1980).
- 5) J. W. Cooley and J. W. Tukey, Math. Comput., vol. 19, 297-301, (1965).
- 6) M. J. Levin, IEEE Trans. Inform. Theory, vol. IT-11, 100-107, (1965).
- 7) R. G. Frehlich and M. J. Yadlowsky, J. Atmos. Ocean. Technol., vol. 11, 1217-1230, (1994).
- 8) J-L. Zarader, et al., J. Atmos. Ocean. Technol., vol. 13, 16-28, (1996).
- 9) J. P. Burg, 37th Annu. Meeting, Soc. Explor. Geophys., Oklahoma City, OK., (1967).
- 10) R. J. Keeler and R. W. Lee, Int. Conf. Acoustics, Speech, and Signal Processing, Instr. Electron. Eng., Tulsa, OK, (1978).
- 11) J-L. Zarader, et al., IEEE Trans. on. Geosi. And Remote Sens., vol. 37, 2678-2691, (1999).
- 12) S. Goldman, Microwave Systems News & Communication Technology, vol. 18-3, 44-52,(1988).
- 13) G. N. Pearson and C. G. Collier, Q. J. R. Meteorol. Soc., vol. 125, 2703-2721, (1999).