P3 大気微量成分の赤外放射観測用 レーザヘテロダイン放射計の開発(I) Development of a Laser heterodyne Radiometer for Detecting Infrared Emissin Lines of Atmospheric minor Constituents 石津美津雄 Mitsuo Ishizu 郵政省 通信総合研究所 Communications Research Laboratory, MPT

Abstract: High resolution spectroscopic instruments can detect minor gasses in the upper atmosphere using the sun as a light source. Several gasses are successfully measured and altitude profiles are retrieved. Radiometers, however, with high sensitivities as well as high resolutions can detect emission lines of the gasses, which will give us time variations of the gasses. This is very important for the research on the night time chemistry of the upper atmosphere. We are developping a laser heterodyne radiometer(LHR) to detect infrared emission lines for this purpose. In this report we present the design of the LHR and the comparison between the estimation and the preliminary observation on the infrared emissions.

1. 序

レーザヘテロダイン分光計やフーリエ分光計で上層大気分子の赤外吸収線を観測し、吸収線形状や 吸収線強度から分子の高度分布を求めることは、すでにいくつかの分子で成功している。しかし、こ れらは太陽を光源としているため昼間しか観測できない。夜間の観測を行うには分子の吸収線の放射 スペクトルを観測するか、月や赤外銀河などの明るい赤外線天体を光源にする必要がある。夜間のデ ータは上層大気の夜間の化学反応を知る上で重要であり、これまでミリ波放射計や冷却フーリエ分光 計⁽¹⁾で試みられてきた。しかし、赤外域では放射強度が低いため、バルーン搭載によるリムスキャ ンを必要とし、常時観測することは困難である。我々は、夜間地上から観測することを目標に、赤外 放射計としては量子限界の最高の感度(NEP=hv/η=4X10⁻¹⁹W/Hz @λ=10µm)と10⁷以上の分解能が期 待されるレーザヘテロダイン放射計を開発中である。本発表では、装置の概略と上層大気分子の赤外 放射スペクトルのモデル計算とこれまでに行った予備観測の結果の比較について報告する。

2. レーザヘテロダイン放射計(LHR)

開発中のLHR装置は、以前開発して航空機搭載の大気微量成分の観測に使用したレーザヘテロダ イン分光計をもとにして、高感度化し、さらに長時間積分が可能になるように安定度を高めている。 装置の模式図をFig.1に示す。天空からの放射はまず、積分のため50%の光チョッピングを受け、90% のビームコンバイナで局発レーザ光と重ねられる。次に、低温の放射と室温の光学部品類の温度差で 発生するシグナルショット雑音による測定の誤差を除くため、回折格子(901ine/mm)の波長フィルタ を通過して、光ミキサに入射する。回折格子は、局部発振器のCO2レーザの波長同定にも用いている。 感度を理論限界まで上げるため、光学系は完全な回折限界を必要とする。このためHe-Neレーザで光 学調整できる軸外し放物面鏡を用いている。CO2レーザは研究室で試作した回折光子同調可能な導波 型外部共振器レーザで、発振開始後30分で電子的共振器調整や手動調整せずに一定の出力を得ること ができる。また、発熱は熱伝導で光学定盤へ放熱されるため、機械振動による出力とスペクトルの雑 音がない。ミキサからのビート信号は冷却増幅器とデュワー外部の増幅器で増幅された後、同じく研 究室で開発された光音響スペアナでスペクトル解析され、計算機で時間積分が行われデータが記録さ れる。このスペアナはマルチチャンネル型であるため、局発レーザを波長走査してスペクトル観測す るシングルチャンネル型に比較して、観測時間を数百倍に短縮することができのが特徴である。 装置の試験と観測データの較正のため、373Kの標準黒体光源と77Kの液体窒素温度に冷却した黒色 紙からの赤外放射をこの装置で測定した結果をFig.2に示す。横軸はIF周波数でほぼ1GHzの帯域を25 6のチャンネルに分割して、10分間積分した結果である。放射強度はそれぞれ、2.45E-5、4.56E-12W *CM-2*(cm-1)-1*sr-1と計算されるが、ヘテロダイン放射計には様々な原因によるオフセットが出力 されるので、放射計出力はこれには比例しない。また、チャンネルおきに出力にオフセットが出力 されるので、放射計出力はこれには比例しない。また、チャンネルおきに出力にオフセットがかかり、 データが2本に分離しているのは光音響スペアナに用いたCCD素子の2本の転送ゲートのアンバランス による。また、出力の周波数特性はほぼ光ミキサと光音響スペアナの特性によるが、190チャンネル 以上のIF周波数域ではミキサの感度が劣化するため、信号強度も小さく、観測データのS/N比を劣化 させる原因となっている。温度373K、積分時間10分での理論S/N比は200程度であり、正確な測定はま だであるが、IF周波数の低周波側は、ほぼこの性能は達成されていると思われる。

3. 予備観測と放射吸収スペクトル

0a、CO2などの赤外放射吸収スペクトルを見積もるために、HITRANデータベースとMcLatchyの標準 大気モデルを用いて、温帯冬季における計算を行い、予想スペクトルを得た。CO2レーザを局発源に 用いた場合の9P(24)と9P(30)に同調して観測した場合の、吸収と放射の予想されるLHRによるIFスペ クトルをFig. 3-4に示す。どちらも03吸収線の密に分布した波長域にあり、大気透過率は低いが、9P (30)の方がより吸収が強く、放射強度も少し高い。また、放射スペクトルは対流圏の水の幅広い連動 放射が大きなバックグラウンドとして存在している。

LHRを用いて、太陽を光源として放射スペクトルを測定した結果をFig.5に示す。大きな放射強度の スペクトルが9P(24)で、弱い方が9P(30)である。どちらも積分時間は10分である。図はLHRのデータ をFig.2の参照データをもとに放射強度に変換してある。大気圏外での赤外太陽等価温度5000Kと透過 率25%から求めた地表での放射強度は0.00097Watt*CM-2*(cm-1)-1*sr-1であり、観測された放射強度 0.0015とは大気モデルと実際の大気の違いを考慮するとよく一致しているといえる。また、03の吸収 スペクトルも計算とよく一致しており、システムとして良好に動作していることがわかる。

次に、ほとんど同時刻にLHRの視野を天頂に向けて放射スペクトルを観測した例をFig.6に示す。積 分時間はどちらも10分である。太陽吸収スペクトルと同じく、Fig.2のデータで変換してある。放射 強度では吸収とは逆に、上のトレースが9P(30)、下が9P(24)の局発レーザの場合である。75チャンネ ル付近のピークは外部からの雑音電波によるものである。9P(30)は予想放射強度3E-6Watt*CM-2*(cm -1)-1*sr-1とほぼ一致しているが、9P(24)は半分ほどの強度しかない。モデル計算でも9P(24)の方が 若干低めの放射強度であるが、実際の強度が低い原因はモデルと実際の大気の差によるものか、他の 原因によるものかは、まだ不明である。

4. まとめ

大気分子の赤外放射スペクトルを観測できるレーザヘテロダイン放射計を開発し、予備観測を行っ てその性能を確認した。しかし、CO₂レーザを用いた観測では¹²C¹⁶O₂と同位体の¹²C¹⁸O₂を用いてき たが、レーザ発振線とO₃の吸収線によい一致が得られず、明確な放射ラインは観測されていない。半 導体レーザが局発レーザに用いることができれば、スペクトル形状の観測に適した孤立した吸収/放 射線を観測できる。O₃の観測に適したスペクトルの例をFig.7に示す。この波長で発振するレーザは すでに調整中であるので、今後速やかに観測体制にもっていきたい。

References

(1)M. M. Abass, et al., "Nighttime Measurements of Stratospheric NOy from Balloon-Borne Thermal Emission Observations", Ozon in the Atmosphere, R. D. Bojkov and P. Fabian Ed (A. Deepak Publishing 1989), p281.

48

Fig. 1 Block diagram of the laser heterodyne radiometer.

Fig. 2 Output data from LHR for the calibrated radiations at 373K and 77K.

49

