P12

# アバランシェフォトダイオードを用いた微弱光検出器

Extremely weak light detector using avalanche photodiode

| 田中光喜                   | 野村彰夫                    |                    |
|------------------------|-------------------------|--------------------|
| Mitsuyoshi TANAKA      | Akio NOMURA             |                    |
| 日置電機株式会社               | 信州大学工学部                 |                    |
| HIOKI E.E. Corporation | Faculty of Engineering, | Shinshu University |

Experimental studies on operational characteristics of extremely weak light detector using germanium avalanche photodiode(Ge-APD) have been carried out. By cooling Ge-APD down to  $-30^{\circ}$ C using peltier element, the dark current can be reduced to 1/10 and under, but the dark count is slightly shifted to the lower pulse height regions in the differential pulse height distribution. The optical input power to be detectable is  $1.7 \times 10^{-11} W (\lambda = 1.3 \mu m)$ .

<u>1.まえがき</u>

微弱光検出には、従来より光電子増倍管(PMT)による光子計数法が用いられている。PMT は、受光面積が広く、内部増倍率が非常に大きいため、高感度な検出が可能である。しかし、1μ m以上の近赤外域においては、PMTでは感度を持つものが得られないため、この波長域でも高い 感度を持つアバランシェフォトダイオード(APD)を用いて微弱光検出を行う試みがなされてい る。<sup>1-3)</sup> APDには、小型軽量、低電圧動作等使う上での利点も多いが、温度に対する不安定性 や過剰増倍雑音の発生等、性能に大きく影響する特性も持ち合わせており、冷却や信号検出等に留 意すべき点が多い。

今回、我々はGe-APDを電子冷却素子(ペルチェ素子)により冷却する構成とした微弱光検 出器を試作し、+30℃と-30℃での初期の基本的なデータを得たのでこれを報告する。

## 2. 検出器の構成と測定系

Fig. 1に試作した検出器の構成と実験の際の測定系を示す。検出器は、ペルチェ素子、Ge-A PDチップキャリア(受光径50μm)、白金薄膜温度センサからなり、アルミニウムのケースに、 熱伝導性接着剤を用いて順に接着していった。ペルチェ素子および温度センサは、APDの暗電流 を低減するために冷却および温度安定化を行うためのものであり、外部の温度制御回路により、到 達温度-30 ℃、安定度±0.1 ℃を得ている。

A P D へのバイアス電圧の印加には、精密直流電源を用いた。 A P D の出力パルスは、前置増幅器(周波数帯域 300 MHz:ゲイン28 dB)により増幅され、ディスクリミネータ・カウンタにより波高弁別、計数が行われる。

入射光には、波長1.3 μ mのLEDを用い、レンズ 1 で平行光とし、NDフィ ルタで減衰させ、レンズ2 で受光面に集光した。入射 光パワーの値は、レンズ2 の焦点位置での光パワーメ ータの値を基準とし、ND フィルタの減衰量を1枚ず つ校正し、使用したNDフ



Fig. 1 Schematic structures of the detector and experimental setup

ィルタの減衰量の合計から換算した。 検出器の位 置調整は、入射光が強い状態で検出器の出力電圧 をモニタしながら、 XYZステージを微調整する ことにより行った。

# 3. 測定結果

Fig. 2に暗電流とバイアス電圧の関係を+30℃ と-30℃について測定した結果を示す。+30℃の データはペルチェ素子へ流す電流の方向を変える ことによって加熱し、容易に得ることができる。 冷却により、1桁以上も暗電流を低減できたこと がわかる。

Fig. 3にダークカウントの微分波高分布を測定 した結果を示す。 測定値は、ディスクリミネータ のレベルを 1mVずつ0.1sec毎に上げながら計数し、 10回積算したものである。 - 30℃における波高分 布は、 + 30℃におけるそれを、低波高側に移動し た形になっており、低波高域でのカウントが増え ている。

Fig. 4に入射光として-77.7dBm(1.7x10<sup>-11</sup>W)を 入射したときの微分波高分布の測定結果を示す。 ダークカウントの場合と全く同様の傾向を示すが、 各温度でダークカウントと入射光がある時とを比 べた場合、 + 30℃ではその差を見いだすことはで きないが、 - 30℃においてはごくわずかではある がその差を識別できる。Fig. 5は、積分波高分布 によってそれを示したものである。これより、 + 30℃においては検出できなかった-77.7dBmの入射 光の検出が、 - 30℃においては可能となったとい える。

#### <u>4.まとめ</u>

- 30℃に冷却することにより、暗電流は1桁以 上低減できたが、ダークカウントとしては、微分 波高分布において低波高域へのわずかな移動がみ られただけであった。また、-77.7dBmの入射光の 検出が可能であることがわかったが、ダークカウ ントとの差が非常に小さく、他の入射光強度との 直線性も含めて正確な検出には至っていない。今 後さらに詳細なデータを得るつもりである。

## 参考文献

1)木谷、林:光学、13(1984)131
2)今井他:63春 応物 P.175,29p-B-9
3)今井他:64春 応物 P.946,4a-ZB-6

