C 4

静止気象衛星ひまわり3号へのCO₂レーザ光伝送実験 Experiments on CO₂ Laser Beam Transmission from Ground to Geostationary Meteorological Satellite - III

荒木賢一*	板部敏和**	高部政雄**	有賀	規 **	猪股英行**	
K. Araki*	T. Itabe**	M. Takabe**	T. Ar	uga**	H. Inomata**	
ATR光電波通信研究所		** 郵政省通信総合研究所				
ATR Optical and Radio Communications Res. Labs		** Communications Res. Lab., MPT 5.				

[SYNOPSIS] The compact, ten watts class CO₂ laser transmitter with two-axis gimbal mechanism was mounted on the CRL's optical satellite tracker to illuminate the Geostationary Meteorological Satellite-III (GMS-III). After solving such problems as laser instabilities at the outdoor operation and high precision beam alignment, the CO₂ laser beam was successfully transmitted to GMS-III. Results obtained through this experiment enhance space-link technologies in optical space communications and space laser radar.

1.はじめに

宇宙光通信、宇宙からの光計測等[1],[2],[3]の基礎に なる実験として、1986年度冬から春にかけて $Ar \nu -$ ザ光(波長0.5145 μ m)と $CO_2 \nu -$ ザ光(波長10.6 μ m)を静 止気象衛星ひまわり3号(GMS-III)へ同時伝送すること を試みた。これは、以前に行った可視のレーザ光伝 送[2],[4]の技術を、通信や計測に対して広範な利用が ある赤外領域へも拡張することを目的としている。

実験では、CO₂レーザの屋外動作における不安定 さ、高精度ビームアライメント、混雑している静止 軌道スロット上の衛星の光学追尾による識別など多く の問題があったが、可視では以前と同様にかなりの 高レベルで伝送することができ、同時にCO₂レーザ 光も伝送に成功した。ここでは、本実験全体のうち CO₂レーザ光伝送の実験概要について報告する。

2.実験概要

伝送実験の概念図をFig.1に示す。通信総研(旧電波研) CRL の衛星追尾光学装置[4]からGMS-IIIへその東京近辺の観測時間に合わせて可視・赤外レーザ光を同時に伝送する。その時のGMS-III搭載の可視・赤外放射計 VISSR で観測されたデータは気象衛星センターで処理された後、観測輝度温度の計算機リストとして得

られる。伝送ビームのパラメータ をTable 1.に示している。今回の赤 外レーザとしては、共振器長が約 90 cm のコンパクトな10 W 級 CO_2 レーザを、光学追尾用望遠鏡の 鏡胴下側に抱き合わせて取り付け光 学追尾とビーム指向が同じになる ようにした。ビームエキスパンダ は、倍率10倍、出射口径 47 mm ϕ のものを用いた。 ジンバル機構によって CO_2 レーザ装置全体の方向の微 調ができる。また、アライメントの補助用にHe-Neレーザを装置下部に取り付けた。

Fig. 1. Schematic diagram of laser beam transmission experiments and data acquisition system.

CRL : Communications Research Laboratory MSC : Meteorological Satellite Center CDAS : Command and Data Acquisition Station VISSR : Visible and Infrared Spin Scanning Radiometer

Laser	Ar laser (visible)	CO ₂ laser (infrared)
Wave length	0.5145 µm	10.6 µm
Transmitting power	3 W	6 W
Beam divergence (full angle)	0.2 mrad	0.4 mrad

(a) V11 1930(JST)	(C)
HHHHGFEEFFFFFFGGFFFGG111HGFFFGGG	<u>ب</u>
HHGGFFFGGGGGGGGGGGGHHHHIIKKKJJJJI	*
GGGGGGGGGGGGGGHHHHHHIIJJKKLLMLLLL	S
(*)→GGFFFGGHHHHIIIIIIJJJJJKKLLNNOOOM	R
HGGGHHHHHHHHHIIJJJJKKLLMMOOPNO	Q
GHGGGGGHHHHHHIIIIJJJJKKLLMMOOPP	P
GGHHHHHGGGHHIIIIIIJJLLMNPPQQR	0
GHHIGHHHHHHHHHIIJLLNNQQRRSS**S	N
HHHHHHHHHHHHHHIIKLLNNRR*****SS	М
JJLLNNPPOOOONNMMLLKKNNSS****SRO	\mathbf{L}
**************************************	K
********************SNNQR*****S	J
N ***************	I
W+ E ****************	H
S	G
(b) W12 2005(JST)	F
GGGDEBCCDDEEECDDDFFGGFFEEEEFFDD	E
EFDEEEEEFFFFEEFFFFGGIIIIHHHHHHG	D
GEFFFFFFGGHHHHGGHHIIKKKKKKJJJI	Char
(+)→FFFFFFFFFHHKKMLIIIIIJJLLMMNMMLL	Temp
HFFFFGGHHHHIHHHIIIJJKKMMOOONNM	-
HGGGGGGGGGGGGHHHHIIJJJJKKMMOOPPO	
GGGHGGGGGGHHHHHHHHHHHJJKKMMOOOORR	
HHHHHGGGHHHGGGHHIIKMOOPPRRSSSSS	
HHGGFFFFFFGGHHITKLNOOOSSSSSSS	
HHT I.I.I.I.IKKK.I.I.I.I.I.IKNOR*****BBOO	

(Sagami Bay)DDSS*******	

(Miura Den)	
(Miula Fell.)	

地上赤外レーザビーコンの像が顕著に検出された 例をFig.2 に、VISSR の諸元をTable 2.に示してい る。レーザビーコンは約2.5°の観測輝度温度の上昇 に寄与している。Table 1.のパラメータによる予想温 度上昇は8°になるが、その1/3が得られている。こ の原因としては、レーザ伝送の側では衛星追尾中の レーザ出力低下とビーム方向の変化、大気透過率の低 下があり、さらにVISSR Data の処理方式に関して、 ローパスフィルタによる帯域制限、リサンプリング などによってスポット像に多く含まれる高い空間周 波数成分が切り落とされることがある(これらにより 見かけ上検出感度は最悪の場合 33%に低下する)。こ れらを総合すると、得られたリスト出力はほぼ妥当 な結果であると考えられる。

3.おわりに

赤外レーザによる地上-静止衛星間リンクの形成は 世界で初めてであり、特に、特別な安定化装置等を設 けない小型のレーザ装置で実現できたことは意義が ある。また、今回GMS-IIIの近くに他の衛星を視野角 0.2°の光学観測で発見した(ソ連の衛星Golizont-6と Statsionar-7の可能性有り)。混雑している静止軌道ス ロットにいる衛星の光学的な識別や追尾を容易にする 有効な一つの手段にレーザビーコンを衛星に搭載す

Cemperature(K)

Fig.2. Radiance distributions around CRL at (a)19:30(JST),(b)20:05(JST) on March 3,1987, and (c) temperature plot along the E-W line including CRL laser beacon. In the figures (a) and (b),one character corresponds to the area of 1.8 km(E-W) by 7.0 km(N-S),and each represents equivalent blackbody temperature as shown in the figure (c).

Table 2. Characteristics of VISSR

Wave length	Vis. 0.5 - 0.75 µm		
	IR. 10.5 - 12.5 μm		
Instantaneous	Vis. $35 \ge 31 \ \mu rad^2$		
field of view	IR. 140 x 140 μ rad ²		
Temperature			
range	170 K - 330 K		
accuracy	$0.5\degree{ m or}{ m less}$		
(near 300K)			
Gray level	Vis. 64 steps		
	IR. 256 steps		

ることがある。レーザ技術の宇宙への展開がいよい よ期待される。

[謝辞] 本実験は気象衛星センターの研究協力の元に 行われた。GMS観測データのリスト出力等、多忙な 業務の中御尽力頂いた高橋正清システム管理課長を始 めとする関係各位に感謝致します。

<u>[参考文献]</u>

 J. N. McElroy *et al.*, "CO2 Laser Communication Systems for Near-Earth Space Applications", Proc. IEEE 65 221 (1977).
 T. Aruga *et al.*, "Earth - to - Geosynchronous Satellite Laser BeamTransmission", Appl.Opt. 24,53(1985).

[3] Y. Furuhama *et al.*, "Present Status of Optical ISL Studies in Japan", SPIE Proc. -810, Rep No. 22 (1987).

[4] T. Aruga *et al.*, "Earth - to - space Laser Beam Transmission for Spacecraft Attitude Measurement", Appl. Opt. 23, 143(1984).