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Fig.1Fig.1Fig.1Fig.1    Frequency spectrum of the noise component of the actual DIAL 
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Fig.2Fig.2Fig.2Fig.2        A model profile of the CO2 concentration in the atmosphere 

 

A study on the data processing of the differential absorption lidar 

for measurements of atmospheric minor constituents 

 

 

Eisuke Hashimoto Yasukuni Shibata and Chikao Nagasawa 

 

 

Tokyo Metropolitan University 

 
Abstract: In the analysis of differential absorption lidar (DIAL), the noise component included in the receiving signal affects 

strongly to the precision of the concentration measurement. The differentiation term in the DIAL equation is an essential 

element of the analysis, and it is a serious problem for the concentration retrieval of atmospheric minor constituents. In this 

paper we present a new method for the DIAL retrieval using running mean and smoothing differentiation in order to improve 

the accuracy of measurements. 
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Fig.Fig.Fig.Fig.3333  Simulated on/off signal profiles of DIAL with noise components 
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Fig.4Fig.4Fig.4Fig.4 Concentration profiles calculated by using the traditional 

method, the running mean method and the new method, respectively. 

(range resolution = 75m) 
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Fig.5Fig.5Fig.5Fig.5    Comparison of averaged error profiles of the running 

mean method, the smoothing differentiation method and the 

new method 
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