CO₂ DIALのための高精度レーザ波長制御 Precise laser wavelength control system for the CO₂ DIAL

茂木 俊, 阿保 真, 長澤親生, 柴田泰邦 Suguru Motegi, Makoto Abo, Chikao Nagasawa and Yasukuni Shibata

首都大学東京システムデザイン研究科

Graduate School of System Design, Tokyo Metropolitan University

Abstract

We are developing precise laser wavelength control system for the CO_2 DIAL because measurement accuracy of the CO_2 DIAL depends on tuning accuracy of laser wavelength to the absorption line. In this paper, we compared with two wavelength control methods which is frequency modulation method and Pound-Drever-Hall method for a CO_2 cell and an etalon. We obtain optimum condition of modulation for minimum tuning accuracy.

1. はじめに

近年,地球温暖化が問題となり,その主な原因として温室効果ガスの影響が指摘されている.特にCO₂の増加は人為的要因が強く,地球温暖化に最も寄与しているとされているため,CO₂の吸収・排出源を把握することは温暖化対策を考える上で重要である.しかし,現状では限られた地上観測データとわずかな鉛直分布データしか得られないため,濃度の鉛直分布を高精度に測定することが重要になっている¹.

CO₂の濃度は、その変動幅が少ないため高精度な測定が要求される.そのため本研究では、高精度のCO₂ DIALを実現するため最も重要な、送信レーザの波長 を決定するシーダレーザの波長制御について検討した.周波数変調を用いた方式と Pound-Drever-Hall 法の2 つの周波数安定化制御方式についてシミュレ ーションにより精度を比較し、最適な変調周波数と 方式を求めた.なお同調素子としては ON 波長は特 に絶対波長が重要なためCO₂吸収セルを、OFF 波長 はエタロン素子を用いる.

2. 周波数変調を用いた周波数安定化制御²

Fig.1に周波数変調を用いた(FM法)周波数安定化シ ステムのブロック図を示す.周波数変調されたレー ザ光を吸収セルまたはエタロン素子を通し、フォト ダイオードで強度信号に変換する.この強度信号を 変調信号で同期検波することでエラー信号が生成さ れる.このエラー信号をフィードバックすることに よりレーザの周波数を安定化する.

Fig.1 Block diagram of frequency stabilization system using frequency modulation method.

レーザ光の角周波数を ω_c ,レーザ光の角周波数変 動を $\Delta\omega_c$,変調角周波数を ω_m ,変調角周波数の最大 角周波数偏移を $\Delta\omega_m$,透過率を $T(\omega)$,透過率の平均 値を \bar{T} とすると、エラー信号 ε_{FM} は次式で表せる.

$$\varepsilon_{FM} = \int_{0}^{\frac{2\pi}{\omega_m}} \left(T(\omega(t)) - \overline{T} \right) \cos(\omega_m t) dt \qquad (1)$$
$$\omega(t) = \omega_c + \Delta \omega_c + \Delta \omega_m \sin \omega_m t$$

3. Pound-Drever-Hall 法による周波数安定化制御³

Fig.2にPound-Drever-Hall法(PDH法)の周波数安定 化システムのブロック図を示す.レーザ光を電気光 学変調器(EOM: Electro-Optic Modulator)により,位相 変調し側波帯を生成する.吸収セルまたはエタロン 素子を通した光をフォトダイオードで強度信号に変 換し,変調信号の位相を変えることにより直交成分 と同相成分のヘテロダイン検波を行い,エラー信号 を生成する.このエラー信号をフィードバックする ことによりレーザ周波数を安定化する.

レーザ光の角周波数を ω ,変調角周波数を Ω ,吸収 セルまたはエタロン素子の複素透過率の周波数特性 を $F(\omega)$ とすると,エラー信号は次式で表せる.ここ で(2)式は直交成分,(3)式は同相成分である.

$$\varepsilon_Q = Re[F(\omega)F^*(\omega + \Omega) - F^*(\omega)F(\omega - \Omega)]$$
(2)

$$\varepsilon_{I} = Im[F(\omega)F^{*}(\omega + \Omega) - F^{*}(\omega)F(\omega - \Omega)]$$
(3)

Fig.2 Block diagram of frequency stabilization system using Pound-Drever-Hall method.

4. CO2吸収セルとエタロン素子

 CO_2 吸収セルの吸収特性 $T(\omega)$ (透過率)は, Table 1 のパラメータを用いて次式で表せる.

$$T(\omega) = exp(-\sigma(\omega)NL)$$
(4)

 CO_2 吸収セルの複素周波数特性 $F(\omega)$ は,

$$F(\omega) = T(\omega) \tag{5}$$

また,エタロン素子の透過率特性*T*(ω)は, Table 2 のパラメータを用いて次式で表せる.

$$T(\omega) = \frac{1}{1 + \frac{4F^2}{\pi^2} \sin^2\left(\frac{\omega}{\omega_{fsr}} \cos\theta\right)}$$
(6)

エタロン素子の複素周波数特性F(ω)は,

$$F(\omega) = \frac{r \left[exp \left(j \frac{\omega}{\omega_{fsr}} \right) - 1 \right]}{1 - r^2 \exp \left(j \frac{\omega}{\omega_{fsr}} \right)}$$
(7)

で表せる.

Table 1 Parameters of a CO₂ absorption cell

Sign	Explanation	Value		
$\sigma(\omega)$	Absorption cross section			
L	Length of cell	80[cm]		
N	Number density of CO ₂	1.415[number/ℓ]		

Table 2 Parameters of an etalon

Sign	Explanation	Value		
F	Finess	10		
ω_{fsr}	Free Spectral Range	10[GHz]		
θ	Angle of incidence	0[rad]		
r	Reflectivity	0.731335		

5. シミュレーション

Table 1,2のパラメータの値と(5),(7)式を用いて、2 つの制御方式を CO_2 吸収セル、エタロン素子それぞれ に適用して、エラー信号のシミュレーションを行い、 変調周波数を変化させたときの周波数同調精度(Δf) を求めた.なお吸収線は実際の CO_2 DIALに用いる中 心波長1.57201797µmのラインを用いた.

Fig.3 Transmission characteristics of CO₂ cell and etalon.

Fig.3にCO₂吸収セルとエタロン素子の透過率特性 を、Fig.4に変調周波数に対する各素子、各方式にお ける、エラー信号にノイズが0.1%乗った時の Δf のシ ミュレーション結果を示す.またTable 3にFig.4より △fが最小となる最適変調周波数と△fを示す.OFF波 長に用いるエタロン素子はどちらの方式でも十分同 調精度が得られることがわかる.またON波長に用い るCO₂吸収セルでは,FM法に比べPDH法のほうが3 倍以上同調精度が良くなることがわかった.

Fig.4 Frequency turning accuracy dependence of modulation frequency for each methods and elements.

Table 3 Optimum modulation frequency and minimum

Δf							
	Etalon		CO ₂ cell				
	PDH	FM	PDH	FM			
Modulation Frequency [GHz]	5.00	0.50	1.39	1.33			
Minimum Δf [MHz]	0.53	2.20	13.1	46.7			

6. まとめ

FM法とPDH法の2つの波長制御方式を比較した結 果,エタロン,CO2吸収セル共にPDH法を用いたほう が同調精度が良いことがわかった.ON波長に用いる CO2吸収セルでは,PDH法を用いると13MHzの高い同 調精度が得られるが,さらに精度を上げるためには, サチュレーション分光法を用いるなどして吸収特性 を狭くする必要がある².

またCO₂の測定精度を上げるためには正確な気温 の測定も重要になる.気温を固定し気圧を変化させ たとき,吸収線のウイングに気圧に対して鈍感な波 長が存在する.この3つ目の波長を用いることにより 気温測定が可能になる⁴.そのためにはオフセットロ ックが必要となる.今後は実際の実験により同調精 度を検証していく.

参考文献

[1] D. Sakaizawa, C. Nagasawa, T. Nagai, M. Abo, Y Shibata, M. Nakazato, T. Sakai, Development of at a 1.6 um differential absorption lidar with a quasi phase matching OPO and photon-counting detector for the vertical CO2 profile, Applied Optics, 48(4), 748, 2009.

[2]NEW FOCUS, "Application Note 7 FM Spectroscopy With Tunable Diode Lasers", "Application Note 15 Introduction to Laser Frequency Stabilization", 2001.

[3] Eric D. Black ,"An introduction to Pound-Drever-Hall laser frequency stabilization", American Association of Physics Teachers. 2000.

[4]堂面拓郎他, 第28回レーザセンシングシンポジウム予稿集, D-3, p36-39