GOSAT プロダクト改良に向けたライダーとスカイラジオメータデータの利用

Application of lidar and skyradiometer data for improvement of GOSAT product

内野修^{1,2)}, 菊地信弘¹⁾, 森野勇¹⁾, 吉田幸生¹⁾, 横田達也¹⁾ 酒井哲²⁾, 永井智広²⁾, 真野裕三²⁾, 清水厚¹⁾, 柴田隆³⁾, 山崎明宏²⁾, 内山明博²⁾, 菊地信行¹⁾

Osamu Uchino^{1, 2)}, Nobuhiro Kikuchi¹⁾, Isamu Morino¹⁾, Yukio Yoshida¹⁾, Tatsuya Yokota¹⁾ Tetsu Sakai²⁾, Tomohiro Nagai²⁾, Yuzo Mano²⁾, Atsushi Shimizu¹⁾, Takashi Shibata³⁾, Akihiro Yamazaki²⁾, Akihiro Uchiyama²⁾, and Nobuyuki Kikuchi¹⁾ ¹⁾国立環境研究所 ²⁾気象研究所 ³⁾名古屋大学

¹⁾National Institute for Environmental Studies, ²⁾ Meteorological Research Institute ³⁾Nagoya University

Abstract

The GOSAT SWIR XCO₂ data in the Version 01.xx released in August 2010 were compared with the Tsukuba TCCON data. The elevated aerosols and thin cirrus clouds had a large impact on the GOSAT SWIR XCO₂. The current retrieval algorithm of XCO₂ and XCH₄ assumes atmospheric aerosols to be uniformly distributed from the ground surface to 2 km altitude. If we take into account of the vertical distributions of aerosols by lidar and skyradiometer at Tsukuba, and Toon's solar irradiance database instead of Kurucz's database, the GOSAT SWIR XCO₂ data came largely close to the Tsukuba TCCON data. In the near future version, the vertical distributions of aerosols which are not confined below 2 km must be considered in the GOSAT SWIR retrieval algorithm.

1. はじめに

大気中の CO₂ や CH₄ のカラム量などを観測する温室効果ガス観測技術衛星(GOSAT、いぶき)が 2009 年 1 月 23 日に種子島から打ち上げられ、観測を継続中である¹⁾。乾燥空気に対する CO₂ と CH₄ のカラム平均体積混合比(XCO₂ と XCH₄)は GOSAT 搭載フーリエ変換分光器(TANSO-FTS)の 3 バンド(758-775, 1560-1720, 1920-2080 nm)で観測される太陽短波長赤外光(SWIR)の地上および海 上反射スペクトルから算出される²⁾。初期検証の結果によると XCO₂ と XCH₄(Ver.01.xx)はそれぞれ 2.3%と 1.2%の負のバイアスがあり、これらのバイアスを補正した後の平均誤差(1 σ)はどちらも約 1%である³⁾。ここでは、特に XCO₂についてのバイアスとばらつきの原因を、つくばで GOSAT と同期 して観測された地上高分解能 FTS、ライダー、スカイラジオメータのデータを用いて調査したので報告 する。

2. つくばにおける地上高分解能 FTS と GOSAT の XCO₂ データ比較

国立環境研究所の高分解能 FTS (Bruker 120HR) 40 は、世界的な炭素循環に関する大気微量成分を 観測する FTS の観測網である Total Carbon Column Observing Network (TCCON) を構成している (以下 Tsukuba TCCON と記す)。TCCON の XCO₂ と XCH₄のデータは各サイト上空での航空機によ る CO₂ や CH₄の直接測定データとの比較から WMO の濃度スケールに校正されている 50 。具体的には TCCON FTS で観測された XCO₂ と XCH₄のデータをそれぞれ 1.011、1.022 倍している。地上・航空 機・衛星で観測された濃度データを WMO スケールに合わせることで、例えば地域別の CO₂ フラック スを求める場合それらのデータを同時に利用できるメリットがある。

Tsukuba TCCON XCO₂ と現バージョンの GOSAT XCO₂データ(TANSO-FTS SWIR Ver.01.xx)を 比較したものを Fig.1 に示す。図の横軸は同時観測日を示す。Fig.2 に 2 波長(1064, 532 nm) 偏光ラ イダー⁶⁾で GOSAT と同期観測した波長 532 nm における後方散乱比 R、偏光解消度 Dep、2 波長の波 長依存性 Alp の鉛直分布を示す。Fig.1 と Fig.2 から 2010 年 2 月 14 日の薄い巻雲(高度 6-11km) や 2 月 23 日の 1-5 km の高さにエアロゾルが存在する場合には、エアロゾルが 1.5 km 以下に存在する 2 月 20日の場合に比べて Tsukuba TCCON と GOSAT のデータ間の差が大きく、自由対流圏のエアロゾル や薄い巻雲に影響を大きく受けていることが解る。

3. ライダーとスカイラジオメータで取得されたエアロゾルの高度分布を考慮して算出された GOSAT データ

GOSAT SWIR Ver.01.xx のアルゴリズムでは、エアロゾルは地上から2kmの高度に一様に分布して いるものと仮定して XCO₂などを求めている。ライダーとスカイライジオメータの観測結果からモデル 化した2種類(湿度 50%下の硫酸塩とダスト)のエアロゾルと薄い巻雲の高度分布と、太陽照度データ としてこれまで用いてきた Kurucz から Toon(私信)のデータベース に換えて求めた GOSAT XCO₂ データ(new XCO₂)とTsukuba TCCONのデータを比較したものを Fig.3 に示す。両者の差は Fig.1 に比べて小さくなっていることが解る。以上のことから、GOSAT のデータを改良するためにはエアロ ゾルの高度分布や薄い巻雲を考慮したアルゴリズムの改良が必要である。なお、解析に用いた気象デー タは気象庁から提供されている。

参考文献

- 1) Kuze et al., Appl. Opt., 48, 6716-6733, 2009.
- 2) Yoshida et al., Atmos. Meas. Tech., 4, 717-734, 2011.
- 3) Morino et al., Atmos. Meas. Tech., 4, 1061-1076, 2011.
- 4) Ohyama et al., J. Geophys. Res., 114, D18303, doi:10.1029/2008JD011465, 2009.
- 5) Wunch et al., Atmos. Meas. Tech., 3, 1351-1362, 2010.
- 6) 内野他, 日本リモートセンシング学会誌, 30, 149-156, 2010.

Fig.1 Comparison of GOSAT XCO₂ (Ver.01.xx, triangle) with Tsukuba TCOON XCO₂ (circle).

Fig.3 Comparison of new GOSAT (triangle) with Tsukuba TCCON XCO₂ (circle).

Fig.2 Vertical profiles of backscattering ratio R, total depolarization ratio Dep and wavelength exponent Alp observed by lidar on 14, 20, and 23 February 2010. Cirrus clouds and elevated aerosols are seen on 14 and 23 February 2010, respectively.