B6

狭帯域原子フィルターを用いた中間圏金属原子層の昼間ライダー観測
Daytime lidar measurement of mesospheric metallic layers using narrow-band atomic filters
阿保 真、長澤親生、柴田泰邦、名倉立統
Makoto Abo, Chikao Nagasawa, Yasukuni Shibata and Tatsunori Nakura
東京都立大学大学院 工学研究科
Graduate School of Engineering, Tokyo Metropolitan University

Abstract : We develop the narrow-band atomic filter for measuring the daytime mesospheric Na layers by the resonance scattering lidar. Their performance in the line-center operation is demonstrated experimentally in an axial magnetic field of 1900G. A peak transmission of 62% and a FWHM linewidth of 4.5pm have been achieved. The daytime Na density measurement is demonstrated by using this filter. Characteristics of the narrow-band atomic filter using other metallic atoms such as K, Ca, Li are also presented.

<u>1. はじめに</u>

従来の中間圏Na層観測用の共鳴散乱ライダー観測は、太陽による背景光が大きいため昼間の観測は困難 であった。昼間のNaライダー観測を実現するためには、共鳴散乱ライダーの受信信号強度がフォトンカウ ンティングレベルであるので、背景光を大幅にカットできる狭帯域のバンドパスフィルターが必要である。 更に、太陽の暗線(フラウンフォーファ線)より狭い透過帯域を持つバンドパスフィルターが実現されれ ば、背景光の大幅な削減が可能になる。Chen et al. が発表した¹⁾ Na原子蒸気セルと磁石を組み合わせた Na vapor dispersive Faraday filter は超狭帯域、高透過率のバンドパスフィルターで、バンド幅約2pmを実現し太陽 背景光を大幅にカットできる。本報告では、我々が独自に開発したNaファラデーフィルターの特性とそれ を用いた昼間のNa層の観測結果、及び他の金属原子ファラデーフィルターのシミュレーション結果につい て述べる。

2. Naファラデーフィルターを用いたNa層の昼夜連続ライダー観測

Naファラデーフィルターの原理、シミュレーション結果については、前回のシンポジウムで既に述べた²⁾ 。Fig1にNa原子ファラデーフィルターの構成図を示す。磁場により共鳴波長の光のみがNa蒸気セル内で ファラデー回転を起こし、直交して置かれた偏光子を通過することができ、狭帯域のバンドパスフィルター が実現されている。

Fig.1 Scheme of the Na vapor dispersive Faraday filter.

Fig.2に狭帯域波長可変リングレーザで測定した、試作したNaファラデーフィルターの透過スペクトル と、送信レーザの線幅を2.5pmとしたときのNa層からの共鳴スペクトルの理論値を示す。Naの共鳴スペクト ルがフィルターの透過帯域内に収まるように、文献1のフィルターよりもバンド幅を広く設計している。得 られた半値幅は約4.5pmである。

Fig.2 Experimental transmission of the Na dispersive vapor filter and theoretical Na D_2 resonance spectrum at mesopause region for laser linewidth of 2.5pm.

従来のNaライダーでは、日没30分後から日出30分前までしか観測ができなかったが、今回は試作したNa 原子ファラデー蒸気フィルターを用いることにより24時間連続のNa層観測に成功した。昼間観測用Naライ ダーの仕様をTable 1に、測定例をFig.3に示す。得られた24時間連続のNa層のプロファイルには、昼夜とも に波動現象によると見られる密度変化が見られた。更に、温度観測用狭帯域レーザを用いることにより、中 間圏界面の昼夜連続温度観測も可能になる。今後Naライダーによる中間圏界面付近の昼夜連続観測を行う ことにより、この高度における gravity wave や tidal wave 等の、長い時間周期の波動現象や、昼間のスポラ ディックNa層と温度との関係などを解明していく予定である。

Table 1. Specifications of TMU Sodium Lidar

Transmitter	Laser	Nd:YAG SHG pumped Dye		
	Wavelength	589nm		
	Pulse Energy	65mJ/pulse		
	Pulse Rate	10pps		
	Linewidth	2.5pm FWHM		
	Beam Divergence	0.2mrad		
Receiver	Telescope diameter	35cm		
	Field of View	0.77mrad		
	Prefilter Bandwidth	3.5nm FWHM		
Data Acquisition	Туре	Photon Counting		
	Range Resolution	100m		

Fig.3 Daytime and nighttime Na density profiles measured by TMU lidar.

3. 他の金属原子ファラデーフィルター

可視領域に共鳴波長を持つ金属原子Na、K、Li、Caをを例にとり、これらの狭帯域フィルターの設計指針 を決めるために、計算機シミュレーションを行った。フィルターの特性を左右するパラメータとして磁場、 セル温度、セル長がある。ここではセル長を1cmに固定してシミュレーションを行った。4つの原子のパラ メータと、シミュレーションより得られた、バンド幅と最大透過率及びその時の磁場とセル温度をTable 2に 示す。

Table 2.	Comparison	of parameters	and simulated	results of atomic	dispersive	Faraday filters
----------	------------	---------------	---------------	-------------------	------------	-----------------

Parameters				Simulated results				
atom	λ (nm)	melting point (°C)	transition	isotope (%)	cell temperature (°C)	magnetic field (G)	bandwidth FWHM (GHz)	peak transmittance (%)
Na	588.995	98	$S_{1/2} \rightarrow P_{3/2}$	0	185	1900	2.0	94
K	769.898	64	$S_{1/2} \rightarrow P_{1/2}$	6.7	110	700	1.1	93
Li	670.784	179	$S_{1/2} \rightarrow P_{1/2}, P_{3/2}$	7.5	417	4000	4.8	84
Са	422.673	848	$S_0 \rightarrow P_1$	3.1	475	1900	2.3	82

また、この最適条件におけるKとCaの透過スペクトルののシミュレーション結果をFig.4及びFig.5に示 す。Kは他の原子よりもセルの温度が低くドップラー幅も狭いため、バンド幅も狭くなっている。CaとLiは 比較的高い温度が必要であるので、製作上は注意が必要である。現在、Ti:サファイアレーザを用いた昼間 のK層観測用に、Kファラデーフィルターの試作を行っている。

Fig.4 Simulated transmission of a K dispersive vapor filter. (resonance line : 770nm)

Fig.5 Simulated transmission of a Ca dispersive vapor filter. (resonance line : 423nm)

参考文献

(1) H.Chen and C.Y.She, Sodium-vapor dispersive Faraday filter, Optics Lett., Vol.18, pp.1019-1021 (1993).

(2) 名倉他、昼間ライダー観測のための狭帯域Na原子ファラデーフィルターの特性、第18回レーザセンシン グシンポジウム、No.C12 (1997).